Form node-transformation matrix for the given network using a.c nodal analysis figure 1.

Figure: 1

Solution:

Let us first designate nodes as shown in figure 2 with assumed nodal voltages.

Figure: 2

At node-1, nodal equation can be written as

$$
-I_{0}+\frac{V_{1}}{1}+\frac{V_{1}-V_{2}}{5}++\frac{V_{1}-V_{3}}{j 10}=0
$$

or $\quad V_{1}(1+0.2-j 0.1)+V_{2}(-0.2)+V_{3}(+j 0.1)=I_{0}$
or $\quad V_{1}(1.2-j 0.1)-0.2 V_{2}+j 0.1 V_{3}=I_{0}$
At node-2, nodal equation can be written as

$$
\begin{equation*}
\frac{V_{2}-V_{1}}{5}+\frac{V_{2}-V_{3}}{\frac{1}{j 5}}=0 \tag{2}
\end{equation*}
$$

or $\quad-0.2 V_{1}+0.2 V_{2}+j 5 V_{2}-j 5 V_{3}=0$
At node-3, the nodal equation is

$$
V_{3}=-2 I=-2\left(\frac{V_{1}}{1}\right)=-2 V_{1}
$$

or $\quad 2 V_{1}+0 \times V_{2}+V_{3}=0$
Thus, in matrix form, equation (1), (2) and (3) are

$$
\left[\begin{array}{ccc}
(1.2-j 0.1) & -0.2 & j 0.1 \\
-0.2 & (0.2+j 5) & -j 5 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{0} \\
0 \\
0
\end{array}\right]
$$

The left hand matrix is required node transformation matrix.

