Duality in Lattice:

When " \leq " is a partial order relation on a set S, then its converse " \geq " is also a partial order relation on S.

GINEER

Distributive lattice:

A lattice (L, Λ, \vee) is said to be distributive lattice if Λ and \vee satisfies the

following conditions $\forall a, b, c \in L$

$$D_1: a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

$$D_2:a\wedge (b\vee c)=(a\wedge b)\vee (a\wedge c)$$

Modular Inequality:

If (L, \land, \lor) is a Lattice, then for any $a, b, c \in L, a \leq c \Leftrightarrow a \lor (b \land c) \leq c$

PALKULAM, KANYAKU

$$(a \lor b) \land c$$

Proof:

Assume $a \le c$

OBSERVE OPTIMIZE OUTSPREAD

$$\Rightarrow a \lor c = c \qquad \dots (1)$$

By, distributive inequality, we have

$$a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$$

 $\Rightarrow a \lor (b \land c) \le (a \lor b) \land c \qquad (Using (1))$

Therefore, $a \le c \Leftrightarrow a \lor (b \land c) \le (a \lor b) \land c$. (2)

Conversely, assume $a \lor (b \land c) \le (a \lor b) \land c$

Now, by the definition of LUB and GLB, we have

$$a \le a \lor (b \land c) \le (a \lor b) \land c \le c \subseteq NEER/VG$$

 $\Rightarrow a \leq c$

Hence $a \lor (b \land c) \le (a \lor b) \land c \Rightarrow a \le c$... (3)

From (2) and (3), we have $a \le c \Leftrightarrow a \lor (b \land c) \le (a \lor b) \land c$.

Hence the proof.

Modular Lattice:

A Lattice (L, Λ, V) is said to be Modular lattice if it satisfies the following

ULAM, KANYAKU

BSERVE OPTIMIZE OUTSPREAD

condition.

 M_1 : if $a \le c$ then $a \lor (b \land c) = (a \lor b) \land c$

Theorem: 1

Every distributive Lattice is Modular, but not conversely.

Proof:

Let (L, Λ, \vee) be the given distributive lattice

$$D_1: a \lor (b \land c) = (a \lor b) \land (a \lor c) \dots (1)$$

Now, if $a \le c$ then $a \lor c = c$... (2)

 $(1)(1) \Rightarrow a \lor (b \land c) = (a \lor b) \land (a \lor c)$

 $= (a \lor b) \land c$ (using (2))

If $a \le c$ then $a \lor (b \land c) = (a \lor b) \land c$

Therefore every distributive lattice is Modular.

But, converse is not true.

i.e., Every Modular Lattice need not be distributive.

For example, M_5 Lattice is Modular but it is not distributive.

Hence the proof.

Theorem: 2

In any distributive lattice $(L, \land, \lor) \forall a, b, c \in L$. Prove that OB_{SERVE} OPTIMIZE OUTSPREAD

PALKULAM, KANYAKU

 $a \lor b = a \lor c, a \land b = a \land c \Rightarrow b = c$

Proof:

Consider $b = b \lor (b \land a)$

(Absorption law)

 $= b \lor (a \land b)$

(Commutative law)

Lattice as a Algebraic system

A Lattice is an algebraic system (L, Λ, \vee) with two binary operation Λ and \vee on L

ERVE OPTIMIZE OUTSPRE

which are both commutative, associative and satisfies absorption laws.

SubLattice:

Let (L, \land, \lor) be a lattice and let $S \subseteq L$ be a subset of L. Then (S, \land, \lor) is a sublattice of (L, \land, \lor) iff S is closed under both operation \land and \lor .

 $\forall a, b \in S \Rightarrow a \land b \in S \text{ and } a \lor b \in S$

Lattice Homomorphism:

Let (L_1, Λ, \vee) and $(L_2, *, \oplus)$ be two given lattices.

A mapping $f: L_1 \to L_2$ is called Lattice homomorphism if $\forall a, b \in L_1$

 $f(a \wedge b) = f(a) * f(b)$

 $f(a \lor b) = f(a) \oplus f(b)$

A homomorphism which is also 1 - 1 is called an isomorphism.

Bounded lattice:

Let (L, Λ, \vee) be a given Lattice. If it has both "0" element and "1" element then it is said to be bounded Lattice. It is denoted by $(L, \Lambda, \vee, 0, 1)$

INEERING

Complement:

Let $(L, \land, \lor, 0, 1)$ be given bounded lattices. Let "*a*" be any element of L. We say that "*b*" is complement of a, if $a \land b = 0$ and $a \lor b = 1$ and "*b*" is denoted by the symbol *a'*. i.e., (b = a'). Therefore $a \land a' = 0$ and $a \lor a' = 1$.

Note: An element may have no complement or may have more than 1 complement.

Example for a complement.

MA8351 DISCRETE MATHEMATICS

Complement of does not exist.

Complement of b does not exist.

Complement of c does not exist.

Complemented Lattice:

A bounded lattice $(L, \Lambda, V, 0, 1)$ is said to be a complemented lattice if every element of L has atleast one complement.

INEER/A

Complete Lattice:

A lattice (L, \land, \lor) is said to be complete lattice if every non empty subsets of L has both glb &lub.

1. Prove that in a bounded distributive lattice, the complement of any element is unique.

Proof:

Let L be a bounded distributive lattice.

Let *b* and *c* be complements of an element $a \in L$.

To prove b = c

Since b and c are complements of a we have

 $a \wedge b = 0, a \vee b = 1, a \wedge c = 0, a \vee c = 1$

Hence the proof.

2. Prove that every distributive lattice is modular.

Proof:

OBSERVE OPTIMIZE OUTSPREAD

Let (L, \leq) be a distributive lattice.

Let $a, b, c \in L$ such that $a \leq c$

To prove that $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$

Assume that $a \leq c$

To prove that $a \lor (b \land c) = (a \lor b) \land c$

When $a \le c \Rightarrow a \lor c = c$

Therefore $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

= (avb)AGINEERING

Hence $a \lor (b \land c) = (a \lor b) \land c$

Hence the proof.

3. Show that in a complemented distributive lattice, $a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow$

 $a' \oplus b = \mathbf{1} \Leftrightarrow b' \leq a' \text{ (or) }, a \leq b \Leftrightarrow a \wedge b' = \mathbf{0} \Leftrightarrow a' \vee b = \mathbf{1} \Leftrightarrow b' \leq a'$

PALKULAM, KANYAKUM

Proof:

To prove $(i) \Rightarrow \overline{(ii)}$

We assume that $a \leq b$

To prove that $a \wedge b' = 0$

We know that $a \le b \Rightarrow a \land b = a$ and $a \lor b = b$

We take $a \lor b = b$

 $\Rightarrow (a \lor b) \land b' = b \land b' = 0$

 $\Rightarrow (a \land b') \lor (b \land b') = 0$

$$\Rightarrow (a \land b') \lor 0 = 0$$

$$\Rightarrow (a \land b') = 0$$
Hence $(i) \Rightarrow (ii)$
To prove $(ii) \Rightarrow (iii)$
We assume that $a \land b' = 0$
To prove that $a' \lor b = 1$
Taking complement on both sides
$$\Rightarrow (a \land b')' = 0'$$

$$\Rightarrow a' \lor b = 1$$
Therefore $a \land b' = 0 \Rightarrow a' \lor b = 1$
Hence $(ii) \Rightarrow (iii)$
To prove $(iii) \Rightarrow (iv)$
SERVE OPTIMIZE OUTSPREAD
Assume that $a' \lor b = 1$
To prove that $b' \le a'$
Now $a' \lor b = 1$

$$\Rightarrow (a' \lor b) \land b' = 1 \cdot b'$$

$$\Rightarrow (a' \lor b) \land b' = b'$$

$$\Rightarrow (a' \land b') \land (b \land b') = b'$$

$$\Rightarrow (a' \land b') \lor 0 = b'$$

$$\Rightarrow (a' \land b') = b'$$

$$\Rightarrow (b' \land a') = b' \text{ by Commutative law}$$

Therefore $a' \lor b = 1 \Rightarrow b' \le a'$
Hence (iii) \Rightarrow (iv)
To prove (iv) \Rightarrow (i)
Assume that $b' \le a'$
To prove that $a \le b$
We have $(b' \land a') = b'$
Taking complement on both sides
 $\Rightarrow (b' \land a')' = (b')'$
 $\Rightarrow b \lor a = b$
Therefore $a \lor b = b \Rightarrow a \le b$
Hence (iv) \Rightarrow (i)

MA8351 DISCRETE MATHEMATICS

Hence $a \le b \Leftrightarrow a \land b' = 0 \Leftrightarrow a' \lor b = 1 \Leftrightarrow b' \le a'$

Hence the proof.

4. State and prove DeMorgan's law of lattice.

Let $(L, \land, \lor, 0, 1)$ is a complemented lattice, then prove that

 (\mathbf{OR})

- 1. $(a \wedge b)' = a' \vee b'$
- 2. $(a \lor b)' = a' \land b'$

Proof:

1. Claim: $(a \land b)' = a' \lor b'$

To prove the above, it is enough to prove that

- (i) $(a \wedge b) \wedge (a' \vee b') = 0$
- (ii) $(a \land b) \lor (a' \lor b') = 1$ as ERVE OPTIMIZE OUTSPREAD(i) Let $(a \land b) \land (a' \lor b')$

 $\Rightarrow ((a \land b) \land a') \lor ((a \land b) \land b')$ (Distributive law)

 $\Rightarrow (a \land b \land a') \lor (a \land b \land b')$ (Associative law)

 $\Rightarrow (0 \land b) \lor (a \land 0) \qquad (b \land b' = 0)$

$$\Rightarrow 0 \lor 0 \qquad (a \land 0 = 0)$$

Hence
$$(a \land b) \land (a' \lor b') = 0$$
 ... (1)

(ii) Let $(a \land b) \land (a' \lor b')$

 $\Rightarrow (a \lor (a' \lor b')) \land (b \lor (a' \lor b')) \land (\text{Distributive law})$

- $\Rightarrow (a \lor b \lor a') \land (a \lor b \lor b')$ (Associative law)
- $(b \lor b' = 1)$ \Rightarrow (1 \lor *b*) \land (*a* \lor 1) $\Rightarrow 1 \land 1 = 1$ $(a \land 0 = 0)$

Hence $(a \land b) \land (a' \lor b') = 1$

From (1) and (2) we have, $(a \land b)' = a' \lor b'$

2. Claim: $(a \lor b)' = a' \land b'$

To prove the above, it is enough to prove that

- (i) $(a \lor b) \land (a' \land b') = 0$ *BSERVE* OPTIMIZE OUTSPREAD
- (ii) $(a \lor b) \lor (a' \land b') = 1$

(i) Let $(a \lor b) \land (a' \land b')$

 $\Rightarrow (a \land (a' \land b')) \lor (b \land (a' \land b'))$ (Distributive law)

 $\Rightarrow (a \land a' \land b') \lor (b \land b' \land a')$

(Associative law)

