Duality in Lattice:

When " \leq " is a partial order relation on a set S, then its converse " \geq " is also a partial order relation on S .

Distributive lattice:

A lattice (L, \wedge, \vee) is said to be distributive lattice if \wedge and \vee satisfies the
following conditions $\forall a, b, c \in L$

$$
\begin{aligned}
& D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \\
& D_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
\end{aligned}
$$

Modular Inequality:

If (L, \wedge, \vee) is a Lattice, then for any $a, b, c \in \boldsymbol{L}, \boldsymbol{a} \leq \boldsymbol{c} \Leftrightarrow \boldsymbol{a} \vee(\boldsymbol{b} \wedge \boldsymbol{c}) \leq$ $(a \vee b) \wedge c$.

Proof:

Assume $a \leq c$

$$
\begin{equation*}
\Rightarrow a \vee c=c \tag{1}
\end{equation*}
$$

By, distributive inequality, we have

$$
\begin{align*}
& a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \\
& \Rightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c \tag{1}
\end{align*}
$$

Therefore, $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$.

Conversely, assume $a \vee(b \wedge c) \leq(a \vee b) \wedge c$

Now, by the definition of LUB and GLB, we have

$$
\begin{aligned}
& a \leq a \vee(b \wedge c) \leq(a \vee b) \wedge c \leq c \\
& \Rightarrow a \leq c
\end{aligned}
$$

Hence $a \vee(b \wedge c) \leq(a \vee b) \wedge c \Rightarrow a \leq c$

From (2) and (3), we have $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$.

Hence the proof.

Modular Lattice:

A Lattice (L, \wedge, \vee) is said to be Modular lattice if it satisfies the following condition.
$M_{1}:$ if $a \leq c$ then $a \vee(b \wedge c)=(a \vee b) \wedge c$

Theorem: 1

Every distributive Lattice is Modular, but not conversely.

Proof:

Let (L, \wedge, \vee) be the given distributive lattice
$D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \ldots$

Now, if $a \leq c$ then $a \vee c=c$
$(1)(1) \Rightarrow a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

$$
=(a \vee b) \wedge c \quad(\text { using }(2))
$$

If $a \leq c$ then $a \vee(b \wedge c)=(a \vee b) \wedge c$

Therefore every distributive lattice is Modular.

But, converse is not true.
i.e., Every Modular Lattice need not be distributive,

For example, M_{5} Lattice is Modular but it is not distributive.

Hence the proof.

Theorem: 2

In any distributive lattice $(\bar{L}, \Lambda, \vee) \forall a, b, c \in L$. Prove that
$a \vee b=a \vee c, a \wedge b=a \wedge c \Rightarrow b=c$

Proof:

$$
\begin{aligned}
\text { Consider } b & =b \vee(b \wedge a) & & \text { (Absorption law) } \\
& =b \vee(a \wedge b) & & \text { (Commutative law) }
\end{aligned}
$$

$$
\begin{array}{ll}
=b \vee(a \wedge c) & \text { (Given condition) } \\
=(b \vee a) \wedge(b \vee c) & \text { (D1 - Condition) } \\
=(a \vee b) \wedge(b \vee c) & \text { (Commutative law) } \\
=(a \vee c) \wedge(b \vee c) & \text { (Using given condition) } \\
=(c \vee a) \wedge(c \vee b) & \text { (Commutative law) } \\
=c \vee(a \wedge b) & \text { (By D1- condition) } \\
=c \vee(a \wedge c) & \\
=c \vee(c \wedge a) & \begin{array}{l}
\text { (Given Condition) } \\
=c
\end{array}
\end{array}
$$

Lattice as a Algebraic system

A Lattice is an algebraic system (L, \wedge, \vee) with two binary operation \wedge and \vee on L which are both commutative, associative and satisfies absorption laws.

SubLattice:

Let (L, \wedge, \vee) be a lattice and let $S \subseteq L$ be a subset of L . Then (S, \wedge, \vee) is a sublattice of (L, \wedge, \vee) iff S is closed under both operation \wedge and \vee.
$\forall a, b \in S \Rightarrow a \wedge b \in S$ and $a \vee b \in S$

Lattice Homomorphism:

Let $\left(L_{1}, \wedge, \vee\right)$ and $\left(L_{2}, *, \oplus\right)$ be two given lattices.

A mapping $f: L_{1} \rightarrow L_{2}$ is called Lattice homomorphism if $\forall a, b \in L_{1}$
$f(a \wedge b)=f(a) * f(b)$

$$
f(a \vee b)=f(a) \oplus f(b)
$$

A homomorphism which is also $1-1$ is called an isomorphism.

Bounded lattice:

Let (L, \wedge, \vee) be a given Lattice. If it has both " 0 " element and " 1 " element then it is said to be bounded Lattice. It is denoted by $(L, \wedge, \vee, 0,1)$

Complement:

Let $(L, \wedge, \vee, 0,1)$ be given bounded lattices. Let " a " be any element of L. We say that " b " is complement of a , if $a \wedge b=0$ and $a \vee b=1$ and " b " is denoted by the symbol a^{\prime}. i.e., $\left(b=a^{\prime}\right)$. Therefore $a \wedge a^{\prime}=0$ and $a \vee a^{\prime}=1$.

Note: An element may have no complement or may have more than 1 complement.

Example for a complement.

Complement of $a=a^{\prime}$ is b and c.

Complement of $b=b^{\prime}$ is a and c.

Complement of $c=c^{\prime}$ is a and b.

In the example given below:

Complement of does not exist.

Complement of b does not exist.

Complement of c does not exist.

Complemented Lattice:

A bounded lattice $(L, \wedge, \vee, 0,1)$ is said to be a complemented lattice if every element of L has atleast one complement.

Complete Lattice:

A lattice (L, \wedge, \vee) is said to be complete lattice if every non empty subsets of L has both glb \&lub.

1. Prove that in a bounded distributive lattice, the complement of any element

is unique.

Proof:

Let L be a bounded distributive lattice.

Let b and c be complements of an element $a \in L$.

To prove $b=c$

Since b and c are complements of a we have
$a \wedge b=0, a \vee b=1, a \wedge c=0, a \vee c=1$

Now $b=b \wedge 1$

$$
\begin{aligned}
& =b \wedge(a \vee c) \\
& =(b \wedge a) \vee(b \wedge c) \\
& =(a \wedge b) \vee(b \wedge c) \\
& =0 \vee(b \wedge c) \\
& =(a \wedge c) \vee(b \wedge c) \\
& =(a \wedge b) \wedge c \\
& =1 \wedge c \\
& =c
\end{aligned}
$$

Hence the proof.

2. Prove that every distributive lattice is modular.

Proof:

ObSENTE OPTMFIG OUISPRER

Let (L, \leq) be a distributive lattice.

Let $a, b, c \in L$ such that $a \leq c$

To prove that $a \leq c \Rightarrow a \vee(b \wedge c)=(a \vee b) \wedge c$

Assume that $a \leq c$

To prove that $a \vee(b \wedge c)=(a \vee b) \wedge c$

When $a \leq c \Rightarrow a \vee c=c$

Therefore $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

$$
=(a \vee b) \wedge c
$$

Hence $a \vee(b \wedge c)=(a \vee b) \wedge c$

Hence the proof.
3. Show that in a complemented distributive lattice, $\boldsymbol{a} \leq \boldsymbol{b} \Leftrightarrow \boldsymbol{a} * \boldsymbol{b}^{\prime}=\mathbf{0} \Leftrightarrow$ $a^{\prime} \oplus b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$ (or), $a \leq b \Leftrightarrow a \wedge b^{\prime}=\mathbf{0} \Leftrightarrow a^{\prime} \vee b=\mathbf{1} \Leftrightarrow b^{\prime} \leq a^{\prime}$

Proof:

To prove (i) $\Rightarrow(i i)$

We assume that $a \leq b$

To prove that $a \wedge b^{\prime}=0$

We know that $a \leq b \Rightarrow a \wedge b=a$ and $a \vee b=b$

We take $a \vee b=b$
$\Rightarrow(a \vee b) \wedge b^{\prime}=b \wedge b^{\prime}=0$
$\Rightarrow\left(a \wedge b^{\prime}\right) \vee\left(b \wedge b^{\prime}\right)=0$
$\Rightarrow\left(a \wedge b^{\prime}\right) \vee 0=0$
$\Rightarrow\left(a \wedge b^{\prime}\right)=0$

Hence $(i) \Rightarrow(i i)$

To prove (ii) \Rightarrow (iii)

We assume that $a \wedge b^{\prime}=0$

To prove that $a^{\prime} \vee b=1$

Taking complement on both sides
$\Rightarrow\left(a \wedge b^{\prime}\right)^{\prime}=0^{\prime}$
$\Rightarrow a^{\prime} \vee b=1$

Therefore $a \wedge b^{\prime}=0 \Rightarrow a^{\prime} \vee b=1$

Hence (ii) \Rightarrow (iii)

To prove $(i i i) \Rightarrow(i v)$

Assume that $a^{\prime} \vee b=1$

To prove that $b^{\prime} \leq a^{\prime}$

Now $a^{\prime} \vee b=1$
$\Rightarrow\left(a^{\prime} \vee b\right) \wedge b^{\prime}=1 \cdot b^{\prime}$
$\Rightarrow\left(a^{\prime} \vee b\right) \wedge b^{\prime}=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right) \wedge\left(b \wedge b^{\prime}\right)=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right) \vee 0=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right)=b^{\prime}$
$\Rightarrow\left(b^{\prime} \wedge a^{\prime}\right)=b^{\prime}$ by Commutative law

Therefore $a^{\prime} \vee b=1 \Rightarrow b^{\prime} \leq a^{\prime}$

Hence (iii) \Rightarrow (iv)

To prove (iv) $\Rightarrow(i)$

Assume that $b^{\prime} \leq a^{\prime}$

To prove that $a \leq b$

We have $\left(b^{\prime} \wedge a^{\prime}\right)=b^{\prime}$

Taking complement on both sides
$\Rightarrow\left(b^{\prime} \wedge a^{\prime}\right)^{\prime}=\left(b^{\prime}\right)^{\prime}$
$\Rightarrow b \vee a=b$

Therefore $a \vee b=b \Rightarrow a \leq b$

Hence (iv) $\Rightarrow(i)$

Hence $a \leq b \Leftrightarrow a \wedge b^{\prime}=0 \Leftrightarrow a^{\prime} \vee b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$

Hence the proof.

4. State and prove DeMorgan's law of lattice.

(OR)

Let $(L, \wedge, \vee, 0,1)$ is a complemented lattice, then prove that

1. $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
2. $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

Proof:

1. Claim: $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$

To prove the above, it is enough to prove that
(i) $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0$
(ii) $(a \wedge b) \vee\left(a^{\prime} \vee b^{\prime}\right)=1$
(i) Let $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)$
$\Rightarrow\left((a \wedge b) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \quad$ (Distributive law)
$\Rightarrow\left(a \wedge b \wedge a^{\prime}\right) \vee\left(a \wedge b \wedge b^{\prime}\right) \quad$ (Associative law)
$\Rightarrow(0 \wedge b) \vee(a \wedge 0)$
$\left(b \wedge b^{\prime}=0\right)$

$$
\Rightarrow 0 \vee 0
$$

$$
(a \wedge 0=0)
$$

Hence $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0$
(ii) Let $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)$
$\Rightarrow\left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(b \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \quad$ (Distributive law)
$\Rightarrow\left(a \vee b \vee a^{\prime}\right) \wedge\left(a \vee b \vee b^{\prime}\right)$
(Associative law)
$\Rightarrow(1 \vee b) \wedge(a \vee 1)$
$\left(b \vee b^{\prime}=1\right)$
$\Rightarrow 1 \wedge 1=1$
$(a \wedge 0=0)$

Hence $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=1$

From (1) and (2) we have, $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
2. Claim: $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

To prove the above, it is enough to prove that
(i) $(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)=0$
(ii) $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)=1$
(i) Let $(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)$
$\Rightarrow\left(a \wedge\left(a^{\prime} \wedge b^{\prime}\right)\right) \vee\left(b \wedge\left(a^{\prime} \wedge b^{\prime}\right)\right) \quad$ (Distributive law)
$\Rightarrow\left(a \wedge a^{\prime} \wedge b^{\prime}\right) \vee\left(b \wedge b^{\prime} \wedge a^{\prime}\right) \quad$ (Associative law)
$\Rightarrow\left(0 \wedge b^{\prime}\right) \vee\left(0 \wedge a^{\prime}\right)$
$\left(b \wedge b^{\prime}=0\right)$
$\Rightarrow 0 \vee 0$
$(a \wedge 0=0)$

Hence $(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)=0$
(ii) Let $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)$
$\Rightarrow\left((a \vee b) \vee a^{\prime}\right) \wedge\left((a \vee b) \vee b^{\prime}\right) \quad$ (Distributive law)
$\Rightarrow\left(a \vee b \vee a^{\prime}\right) \wedge\left(a \vee b \vee b^{\prime}\right)$
(Associative law)
$\Rightarrow(1 \vee b) \wedge(a \vee 1)$
$\left(b \vee b^{\prime}=0\right)$
$\Rightarrow 1 \wedge 1=1$
(Idempotent law)

Hence $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)=1$

From (3) and (4) we have, $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

