2.2 Continuity

Definition:

A function f is continuous at a number ' a ' if $\lim _{x \rightarrow a} f(x)=f(a)$
Note: (i)
If f is continuous at a, then

1. $f(a)$ should exist.
2. $\lim _{x \rightarrow a} f(x)$ exist both on the left and right
3. $\lim _{x \rightarrow a} f(x)=f(a)$

The definition says that f is continuous of a if $f(x)$ approaches $f(a)$ as x approaches a.
Note: (ii)
The function $f(x)$ is said to be discontinuous at $x=a$ if one or more of the above three conditions are not satisfied.

Example:

Explain why the function is discontinuous at the given number ' a '?

a) $f(x)=\frac{1}{x+2}, a=-2$
b) $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{array}\right.$
c) $f(x)=\left\{\begin{array}{ccc}\cos x & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1-x^{2} & \text { if } & x>0\end{array}\right.$

Solution:

a) Given $f(x)=\frac{1}{x+2}, a=-2$

$$
f(-2)=\frac{1}{-2+2}=\frac{1}{0}=\infty, \text { undefined. }
$$

$\therefore f(x)$ is discontinuous at a.
b) $\lim _{x \rightarrow a} f(x)=f(a)$

$$
\begin{gathered}
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2} \\
\quad=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{x-2}
\end{gathered}
$$

$$
=\lim _{x \rightarrow 2}(x+1)=3 \neq 1=f(2) \text { given }
$$

Hence the function is discontinuous at $x=2$.
c) The given function is defined for all real values of x.

Check: $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos x=\cos 0=1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(1-x^{2}\right)=1-0=1$
But it is given $f(0)=0$

$$
\therefore \lim _{x \rightarrow 0} f(x) \neq f(0)
$$

$\therefore f(x)$ is discontinuous at $x=0$

Example

How would you remove the discontinuity of $f(x)=\frac{x^{3}-8}{x^{2}-4}$

Solution:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Given $f(x)=\frac{x^{3}-8}{x^{2}-4}$
$f(x)$ is defined in all the real vlues except at $x=2$.
$\therefore f(2)$ is not defined.

$$
\text { But } \begin{aligned}
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x+2)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x+2)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}+2 x+4\right)}{(x+2)} \\
& =\frac{4+4+4}{2+2}=\frac{12}{4}=3
\end{aligned}
$$

Then the discontinuity is removed.
\therefore The function is defined as $\left\{\begin{array}{cc}\frac{x^{3}-8}{x^{2}-4} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{array}\right.$

Theorem:

If f and g are continuous at ' a ' and c is a constant then the following are continuous.
(i) $c f$
(ii) $f \pm g$
(iii) $f g$
(iv) $\frac{f}{g}$ if $g(a) \neq 0$

Theorem:

(i) Any polynomial is continuous everywhere.
(ii) Any rational function is continuous wherever it is defined.

Note:

The following types of functions are continuous at every number in their domains: Polynomials, rational fractions, root functions, trigonometrical functions, inverse trigonometric functions, exponential functions, logarithmic functions.

Theorem:

$\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$

Theorem:

If g is continuous at a and f is continuous at $g(a)$, then the composite function
fog
given by $(f o g) x=f(g(x))$ is continuous at a.

Theorem: (The Intermediate value theorem):

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number
between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$
Then there exists a number c in (a, b) Such that $f(c)=N$.

Example.

Discuss the continuity of the function $\frac{x^{2}-x-2}{x-2}$

Solution:

A function f is continuous at ' a ' if $\lim _{x \rightarrow a} f(x)=f(a)$
The given function $\frac{x^{2}-x-2}{x-2}$ is defined for all real value of x except at $x=2$. So $f(2)$ is not defined.

Hence the function is discontinuous at $x=2$.

Example

Evaluate $\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)($ or $) \lim _{x \rightarrow 1} \operatorname{arc} \sin \frac{1-\sqrt{x}}{1-x}$
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right) & =\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-(\sqrt{x})^{2}}\right) \\
& =\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{(1+\sqrt{x})(1-\sqrt{x})}\right) \\
& =\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
\end{aligned}
$$

Example
Show that the junction $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval [-1, 1]

Solution:

$$
\text { Given } f(x)=1-\sqrt{1-x^{2}} \text { in }[-1,1]
$$

Let $a \in[-1,1]$, i.e., $-1<a<1$
To Prove $\lim _{x \rightarrow a} f(x)=f(a)$

$$
\begin{aligned}
& \text { L.H.S }=\lim _{x \rightarrow a} f(x) \\
& \quad=\lim _{x \rightarrow a}\left[1-\sqrt{1-x^{2}}\right] \\
& =1-\sqrt{1-a^{2}} \\
& =f(a)
\end{aligned}
$$

\therefore The given function is continuous.

Example

For what value of the constant b is the function \boldsymbol{f} continuous on $(-\infty, \infty)$
$f(x)=\left\{\begin{array}{cc}b x^{2}+2 x \text { if } & x<2 \\ x^{3}-b x \text { if } & x \geq 2\end{array}\right.$

Solution:

Given the function is continuous.

$$
\therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(b x^{2}+2 x\right)=\lim _{x \rightarrow 2}\left(x^{3}-b x\right) \\
& \quad \Rightarrow 4 b+4=8-2 b \\
& \quad \Rightarrow 4 b+2 b=8-4 \\
& \quad \Rightarrow 6 b=4 \\
& \quad \Rightarrow b=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Example

Suppose f and g are continuous functions such that $g(2)=6$ and
$\lim _{x \rightarrow 2}[3 f(x)+f(x) g(x)]=36, \operatorname{Find} f(2)$

Solution:

Given, $\lim _{x \rightarrow 2}[3 f(x)+f(x) g(x)]=36, g(2)=6$
$3 \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} f(x) g(x)=36$
$\Rightarrow 3 f(2)+f(2) g(2)=36$
$\Rightarrow f(2)[3+g(2)]=36$
$\Rightarrow f(2)[3+6]=36$
$\Rightarrow f(2)=\frac{36}{9}$
$\Rightarrow f(2)=4$

Exercise

1. Find $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
2. Use continuity to evaluate $\lim _{x \rightarrow \pi} \frac{\sin x}{2+\cos x}$
3. Using continuity to evaluate $\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{ } x}{1-x}\right)$
4. Use continuity to evaluate $\lim _{x \rightarrow 4} \frac{5+\sqrt{ } x}{\sqrt{5+x}}$
5. Using continuity to evaluate $\lim _{x \rightarrow 2} \tan ^{-1}\left(\frac{x^{2}-4}{3 x^{2}-6 x}\right)$

Ans: $\frac{-1}{11}$
Ans: 0
Ans: $\frac{\pi}{6}$
Ans: $\frac{7}{3}$
Ans: $\tan ^{-1}\left(\frac{2}{3}\right)$
6. How would you remove the discontinuity of $f(x)=\frac{x^{4}-1}{x-1}$ Ans: $f(x)=$

$$
\left\{\begin{array}{cc}
\frac{x^{4}-1}{x-1} \text { if } & x \neq 1 \\
4 & \text { if }
\end{array}\right.
$$

7. Where is the function $f(x)=\frac{\log x+\tan ^{-1} x}{x^{2}-1}$ continuous?

Ans: It is continuous on $(0,1)$ and $(1, \infty)$
8. Where is the function $f(x)=\sin x^{3}$ continuous? Ans: Continuous on R
9. Show that there is a root of the equation $x^{3}-x-1=0$ between 1 and 2

Derivatives

Definition:

A real valued function f defined on an open interval I is said to be differentiable at $a \in I$ iflim ${ }_{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{a}+\mathrm{h})-\mathrm{f}(\mathrm{a})}{\mathrm{h}}$ exists and is finite, and the value of the limit is denoted by $f^{\prime}(a)$ and is called the differential coefficient or the derivative of $f(x)$ at the point $x=a$ If f is differentiable at each point of I , we say that f is differentiable on I .

$$
\text { i.e., } f^{\prime}(a)=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{a}+\mathrm{h})-\mathrm{f}(\mathrm{a})}{\mathrm{h}}
$$

Note:

The tangent line to $y=f(x)$ at $\left(x_{1}, y_{1}\right)$ is the line through $\left(x_{1}, y_{1}\right)$ whose slope is equal to $f^{\prime}(a)$, the derivative of f at a.
(i) Equation of tangent line at $\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$
(ii) Equation of the normal line at $\left(x_{1}, y_{1}\right)$ is $y_{1}=\left(\frac{-1}{m}\right)\left(x-x_{1}\right)$

Example:

Find an equation of the tangent line to the curve at the given point
a) $y=\frac{3}{x}$ at $(3,1)$
b) $y=x^{2}-8 x+9$ at $(3,-6)$
c) $y=\sqrt{x}$ at $(1,1)$

Solution:

a) $y=f(x)=\frac{3}{x}$ at $(3,1)$
$f^{\prime}(x)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$

$$
\begin{aligned}
& \quad=\lim _{x \rightarrow 3} \frac{\frac{3}{x}-1}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{3-x}{x(x-3)} \\
& =\lim _{x \rightarrow 3}\left(\frac{-1}{x}\right) \\
& =\frac{-1}{3} \\
& \therefore \mathrm{~m}
\end{aligned}=\frac{-1}{3} 8
$$

Equation of the tangent line at $(3,1)$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
\Rightarrow & y-1=\frac{-1}{3}(x-3) \\
\Rightarrow & 3 y-3=-x+3 \\
\Rightarrow & x+3 y-6=0 \\
& y=\frac{6-x}{3} \\
& y=\frac{-1}{3} x+2
\end{aligned}
$$

b) $y=x^{2}-8 x+9 \mathrm{at}(3,-6)$
$f^{\prime}(x)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$
$=\lim _{x \rightarrow 3} \frac{x^{2}-8 x+9-(-6)}{x-3}$
$=\lim _{x \rightarrow 3} \frac{x^{2}-8 x+15}{x-3}$
$=\lim _{x \rightarrow 3} \frac{(x-5)(x-3)}{x-3}$
$=\lim _{x \rightarrow 3}(x-5)$
$m=-2$
Equation of the tangent line at $(3,-6)$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+6=-2(x-3) \\
& y=-2 x+6-6 \\
& y=-2 x
\end{aligned}
$$

c) $y=\sqrt{x}$ at $(1,1) y=f(x)=\sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}
\end{aligned}
$$

$$
\mathrm{m}=\frac{1}{2}
$$

Equation of the tangent line at $(1,1)$ is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{1}{2}(x-1) \\
& 2 y-2=x-1 \\
& 2 y=\frac{x+1}{2}
\end{aligned}
$$

Example:

$$
\text { If } f(x)=x^{3}-x \text {, find } f^{\prime}(x) \text { and also find } f^{\prime \prime}(x)
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-(x+h)\right]-\left(x^{3}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x-h-x^{3}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1
\end{aligned}
$$

$f^{\prime}(x)=3 x^{2}-1$
$f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(\mathrm{x}+\mathrm{h})-f^{\prime}(\mathrm{x})}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}-1\right]-\left[3 x^{2}-1\right]}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-1-3 x^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 6 \mathrm{x}+3 \mathrm{~h}
\end{aligned}
$$

$f^{\prime \prime}(x)=6 x$

Example

If $\boldsymbol{f}(\boldsymbol{x})=\sqrt{ } \boldsymbol{x}$, find the derivative of \boldsymbol{f}. State the domain of \boldsymbol{f}^{\prime}

Solution:

$$
\begin{aligned}
f(x) & =\sqrt{ } x \\
f^{\prime}(x) & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x}+h-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x}+h+\sqrt{x}} \\
& =\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$f^{\prime}(x)$ exists if $x>0$
Hence the domain of f^{\prime} is $(0, \infty)$
This is smaller than the domain of f, which is $[0, \infty)$

Exercise

1. Find the equation of the tangent line to the curve at the given point
(i) $f(x)=4 x-3 x^{2}$ at $(2,-4)$
(ii) $f(x)=x^{4}$ at $(1,0)$
(iii) $f(x)=3 x^{2}-x^{3}$ at $(1,2)$

Ans: $y=-8 x+12$
Ans: $y=4 x-4$
Ans: $3 x-1$
2. Find the derivative of the function $f(x)=x^{3}-7 x$, and find the equation of $f^{\prime}(a)$

Ans: $f^{\prime}(a)=3 a^{2}-7$
3. Find the derivative if the following functions:
(i) $f(x)=x^{3}-3 x+5$
(ii) $f(x)=x^{n}$
(iii) $f(x)=e^{x}$

Ans: $f^{\prime}(x)=3 x^{2}-3$
Ans: $f^{\prime}(x)=n x^{n-1}$
Ans: $f^{\prime}(x)=e^{x}$

