
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EXPRESSIONS AND STATEMENTS

 Expressions

 An expression represents data item such as variables, constants and are

interconnected with operators as per the syntax of the language.

 An expression is evaluated using assignment operators.

Syntax

Variable = expression;

Example: 1

x=a*b-c;

 In example 1, the expression evaluated from left to right. After the evaluation of

the expression the final value is assigned to the variable from right to left.

Example: 2

a++;

 In example 2, the value of variable a is incremented by 1, i.e, this expression is

equivalent to a = a + 1.

 Statements

 A statement is an instruction given to the computer to perform an action. There

are three different types of statements in C:

1. Expression Statements

2. Compound Statements

3. Control Statements

Expression Statement

 An expression statement or simple statement consists of an expression followed

by a semicolon (;).

Example

a=100;

b=20;

c=a/b;

Compound Statement

 A compound statement also called a block, consists of several individual

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

statements enclosed within a pair of braces { }.

Example

{

a=3;

b=10;

c=a+b;

}

Control Statement

 A single statement or a block of statements can be executed depending upon a

condition using control statements like if, if-else, etc.

Example

a=10;

if (a>5)

{

b= a+10;

}

 CONDITIONAL STATEMENTS

 The conditional statement requires the programmer to specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

 In a conditional statement, the flow of execution may be transferred from one part

to another part based on the output of the conditional test carried out. It has been

further classified into selective and loop constructs. In a selective constructs, the

statements are selected for execution based on the output of the conditional test

given by an expression. It supports the following constructs such as if-else, if-

else-if, nested-if and switch case statement. In loop constructs, the block of

statements will be executed repeatedly until the condition is true else the loop will

be terminated. It supports the following constructs such as For, While and Do-

while loops.

 Conditional Branching Statement

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Selection Statement

 Simple If statement

 The syntax for a simple if statement is

if (expression)

{

block of statements;

}

 In this statement, if the expression is true, the block of statements are executed

otherwise false and it comes out of the if condition.

Fig. 1.7 Flowchart for an If statement

Program 1.10

/*Program to find the given number is divisible by 2 */

#include<stdio.h>

void main()

{

int n;

printf(“\n Enter the number”);

scanf(“%d”,&n);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

if(n%2==0)

{

printf(“\n The given number%d is divisible by 2", n);

}

getch();

}

Output

Enter the number : 10

The given number 10 is divisible by 2

Program 1.11

/* Program to check the given numbers are equal or not */

#include<stdio.h>

#include<conio.h>

void main()

{

int m,n;

clrscr();

printf(“\n Enter two numbers:”);

scanf(“%d %d”, &m,&n);

if (m==n)

printf(“\n Two numbers are equal”);

getch();

}

Output

Enter two numbers: 10 10

Two numbers are equal.

 If –else statement

 The syntax for the if-else statement is

if(expression)

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

{

block of statements1;

}

else

{

block of statements2;

}

Fig. 1.8 Flowchart for the If-else statement

 In this statement, if the expression is true the block of statements1 will be

executed, otherwise the block of statements2 will be executed.

Program 1.12

/* Program to find the given number is positive or negative */

#include<stdio.h>

void main()

{

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

int n;

printf(“\n Enter the number:”);

scanf(“%d”,&n);

if(n>0)

{

printf(“\n The given number %d is positive”, n);

}

else

{

printf(“\n The given number %d is negative”, n);

}

}

Output

Enter the number : 5

The given number 5 is positive.

Program 1.13

/* Program to find the given number is even or odd */

#include<stdio.h>

#include<conio.h>

void main()

{

int a;

clrscr();

printf(“\n Enter the number:”);

scanf(“%d”,&a);

if (a%2==0)

printf(“\n %d is an even number”,a);

else

printf(“%d is an odd number”,a);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

getch();

}

Output

Enter the number: 10

10 is an even number.

 Conditional Expression

 The ternary operator is used to form a conditional expression. It uses three

operands and hence it is called as a ternary operator. The syntax for a conditional

expression is:

<expression-1> ? <expression-2> : <expression-3>;

 In this method if expression-1 is true then expression-2 is evaluated, otherwise

expression-3 is evaluated.

Fig. 1.9 Flowchart for a Conditional expression

Program 1.14

/* Program to find biggest of two given numbers */

#include<stdio.h>

void main()

{

int x,y,z;

printf(“\n Enter the value of x and y:”);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

scanf(“%d%d”,&x,&y);

z = ((x>y)?x:y);

printf(“The biggest value is %d”,z);

getch();

}

Output

Enter the value of x and y: 5 10

The biggest value is 10

 If-else-if statement

 The syntax for the if-else-if statement is

if(expression1)

{

statements1;

}

else if(expression2)

{

statements2;

}

else if(expression3)

{

statements3;

}

else

{

statements4;

}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 In this statement, if the expression1 is true, statements1 will be executed,

otherwise the expression2 is evaluated, if it is true then statements2 is executed,

otherwise the expression3 is evaluated, if it is true then statements3 is executed,

otherwise statements4 is executed.

Fig. 1.10 Flowchart for the If-else-if statement

Program 1.15

/* Program to find the student’s class for the given average marks using if-elseif*/

#include<stdio.h>

void main()

{

int Avg_Mark;

printf (“Enter the Average mark:”)

scanf(“%d”,&Avg_Mark);

if(Avg_Mark>=75)

{

 CS3353 C PROGRAMMING AND DATA STRUCTURES

printf(“Distinction”);

}

elseif((Avg_Mark>=60) && (Avg_Mark<75))

{

printf(“First Class”);

}

elseif((Avg_Mark>=50) && (Avg_Mark<60))

{

printf(“Second Class”);

}

elseif((Avg_Mark>=45) && (Avg_Mark<50))

{

printf(“Third Class”);

}

else

{

printf(“Fail”);

}

}

Output

Enter the Average Mark : 65

First Class

Program 1.16

Write a program to calculate the gross salary for the conditions given below:

 CS3353 C PROGRAMMING AND DATA STRUCTURES

/* Program to Calculate the gross salary */

#include<stdio.h>

#include<conio.h>

void main()

{

float bs, hra, da, cv, ts;

clrscr();

printf(“\n Enter Basic salary:”);

scanf(“%f”,&bs);

if(bs>=5000)

{

hra = bs*20/100;

da = bs*110/100;

cv = 500;

}

else if(bs>=3000 && bs<5000)

{

hra = bs*15/100;

da = bs*100/100;

cv = 400;

}

else if(bs<3000)

{

 CS3353 C PROGRAMMING AND DATA STRUCTURES

hra = bs*10/100;

da = bs*90/100;

cv = 300;

}

ts = bs+hra+da+cv;

printf(“\nBasic salary: %5.2f”,bs);

printf(“\nHRA: %5.2f”,hra);

printf(“\nDA: %5.2f”,da);

printf(“\nConveyance: %5.2f”,cv);

printf(“\nGross Salary: %5.2f”,ts);

getch();

}

Output

Enter basic salary: 5400

Basic salary: 5400

HRA: 1080

DA: 5940

Conveyance: 500

Gross salary: 12920

 Nested if statement

 The syntax for the nested if statement is

if(expression1)

{

statements1;

}

else

{

if(expression2)

 CS3353 C PROGRAMMING AND DATA STRUCTURES

{

statements2;

}

else

{

statements3;

}

}

Fig. 1.11 Flowchart for Nested if statement

 In this statement, if expression1 is true, then statement1 is evaluated, otherwise

the inner if expression2 is true then statements2 will be executed otherwise inner

else statements3 will be executed.

Program 1.17

/* Program to find the biggest of given three numbers */

#include<stdio.h>

void main()

 CS3353 C PROGRAMMING AND DATA STRUCTURES

{

int x,y,z;

printf(“\n Enter the three numbers”);

scanf(“%d%d%d”,&x,&y,&z);

if ((x>y) && (x>z))

{

printf(“The Biggest number = %d”,x);

}

else

{

if(y>z)

{

printf(“The Biggest number =%d”,y);

}

else

{

printf(“The Biggest number =%d”,z);

}

}

getch();

}

Output

Enter the three numbers: 5 2 8

The Biggest number = 8

 Switch () Case Statement

 The switch () case statement is like if statement that allows us to make a decision

from a number of choices. The switch statement requires only one argument of

any data type, which is checked with a number of case options.

 The switch statement evaluates the expression and then looks for its value among

 CS3353 C PROGRAMMING AND DATA STRUCTURES

the case constants.

 If the value matches with a case constant, this particular case statement is

executed. If not, the default is executed. The general syntax for the switch - case

statement is:

switch<exprn>

{

case constant_1:

{

statements1;

break;

}

case constant_2:

{

statements2;

break;

}

case constant_3:

{

statements3;

break;

}

case constant_n:

{

statementsn;

break;

}

default:

{

default statements;

}

 CS3353 C PROGRAMMING AND DATA STRUCTURES

}

Fig. 1.12 Flowchart for Switch - Case statement

Program 1.18

/* Program to provide multiple functions such as 1. Addition 2. Subtraction

3. Multiplication 4. Division by using switch statements. */

#include<stdio.h>

#include<conio.h>

void main()

{

float c;

int a,b,n;

printf(“\n MENU”);

printf(“\n 1.Addition”);

printf(“\n 2.Subtraction”);

printf(“\n 3.Multiplication”);

printf(“\n 4.Division”);

 CS3353 C PROGRAMMING AND DATA STRUCTURES

printf(“\n 0.Exit”);

printf(“\n Enter your choice:”);

scanf(“%d”,&n);

printf(“Enter two numbers:”);

scanf(“%d%d”,&a,&b);

switch(n)

{

case 1:

c = a + b;

printf(“\n Addition: %d”,c);

break;

case 2:

c = a - b;

printf(“\n Subtraction: %d”,c);

break;

case 3:

c = a * b;

printf(“\n Multiplication: %d”,c);

break;

case 4:

c = a / b;

printf(“\n Division: %d”,c);

break;

case 0:

exit();

break;

default:

printf(“Invalid choice”);

 CS3353 C PROGRAMMING AND DATA STRUCTURES

break;

}

getch();

}

Output

Menu

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Exit

Enter your choice: 2

Enter two numbers: 40 20

Subtraction: 20

 Looping Statements

 A loop is defined as a block of statements which are repeatedly executed for

certain number of times. The ̀ C’ language supports three types of loop statements.

1. for statement

2. while statement

3. do-while statement

 For Loop Statement

 The for loop allows to execute a set of instructions until a certain condition is

satisfied. Condition may be predefined or open-ended.

 The syntax for loop this is follows:

for<initial value>;<condition>;<incrementation/decrementation>)

{

block of statements;

}

 CS3353 C PROGRAMMING AND DATA STRUCTURES

Fig. 1.13 Flowchart of the For loop statement

 Here the initial value means the starting value assigned to the variable and

condition in the loop counter to determine whether the loop should continue or

not. Incremention / decrementation is to increment/decrement the loop counter

value each time the program segment has been executed.

Program 1.19

/* Program to Generate numbers from 1 to 10 */

#include<stdio.h>

void main()

{

int i,n;

printf(“\n Enter the limit”);

scanf(“%d”,&n);

for(i=1;i <=n;i++)

{

printf(“%d\n”,i);

 CS3353 C PROGRAMMING AND DATA STRUCTURES

}

getch();

}

Output

Enter the limit: 10

1

2

3

4

5

6

7

8

9

10

 While Loop Statement

 The syntax for the while loop statement is

while(condition)

{

block of statements;

incr/decr;

}

 The while loop is often used when the number of times the loop is to be executed

is not known in advance. A sequence of statements are executed until some

condition is satisfied.

 When the condition specified inside the parenthesis the while loop is satisfied, the

control is transferred to the statements inside the loop and executes the body of

the loop. The loop continues until the condition is violated. The while tests the

condition before each iteration.

 If the condition initially fails the loop is skipped entirely even in the first iteration

 CS3353 C PROGRAMMING AND DATA STRUCTURES

itself. It is otherwise called as entry controlled loop.

Fig. 1.14 Flowchart of the While loop

Program 1.20

/* Program to Generate the Even numbers to a given limit*/

#include<stdio.h>

#include<conio.h>

void main()

{

int n,i;

printf(“\n Enter the limit:”);

scanf(“%d”,&n);

i=1;

while(i<=n)

{

if(i%2==0)

printf(“%d\t”,i);

 CS3353 C PROGRAMMING AND DATA STRUCTURES

i++;

}

getch();

}

Output

Enter the limit: 10

2 4 6 8 10

 Do While Statement

 The do while loop varies from the while loop in the checking condition. The

condition of the loop is not tested until the body of the loop has been executed

once. If the condition is false, after the first loop iteration the loop terminates. The

statements are executed atleast once even if the condition fails for the first time

itself. It is otherwise called as exit control loop.

Fig. 1.15 Flowchart of the Do while loop

 The syntax for the do while loop is

do

{

statements;

Program 1.21

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS3353 C PROGRAMMING AND DATA STRUCTURES

}
while(condition);

/* Program to check the given number is palindrome or not */

#include<stdio.h>

#include<conio.h>

void main()

{

int n,t,s,r;

clrscr();

printf(“\n Enter the number”);

scanf(“%d”,&n);

t=n;

s=0;

do

{

r=n%10;

s=(s*10)+r;

n=n/10;

} while(n>0);

if(t==s)

printf(“%d is a palindrome”,t);

else

printf (“%d is not a palindrome”, t);

getch();

}

Output

Enter the number 242

242 is a palindrome

	EXPRESSIONS AND STATEMENTS
	Expressions
	Syntax
	Example: 1
	Example: 2

	Statements
	Expression Statement
	Example
	Compound Statement
	Example (1)
	Control Statement
	Example (2)

	CONDITIONAL STATEMENTS
	Conditional Branching Statement
	 Simple If statement
	Fig. 1.7 Flowchart for an If statement
	Output
	Program 1.11
	Output (1)
	 If –else statement
	Fig. 1.8 Flowchart for the If-else statement
	Program 1.12
	Output (2)
	Program 1.13
	Output (3)
	 Conditional Expression
	<expression-1> ? <expression-2> : <expression-3>;

	Fig. 1.9 Flowchart for a Conditional expression
	/* Program to find biggest of two given numbers */
	Output (4)
	 If-else-if statement
	Fig. 1.10 Flowchart for the If-else-if statement
	/* Program to find the student’s class for the given average marks using if-elseif*/
	Output (5)
	Program 1.16
	Output (6)
	 Nested if statement
	Fig. 1.11 Flowchart for Nested if statement
	Program 1.17
	Output (7)
	 Switch () Case Statement
	Fig. 1.12 Flowchart for Switch - Case statement
	/* Program to provide multiple functions such as 1. Addition 2. Subtraction
	Output Menu

	Looping Statements
	 For Loop Statement
	Fig. 1.13 Flowchart of the For loop statement
	Program 1.19
	Output
	 While Loop Statement
	Fig. 1.14 Flowchart of the While loop
	/* Program to Generate the Even numbers to a given limit*/
	Output (1)
	 Do While Statement
	Fig. 1.15 Flowchart of the Do while loop
	Program 1.21
	/* Program to check the given number is palindrome or not */
	Output (2)

