ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY Approved by AICTE \& Affliated to anna university Accredited with A $^{+}$grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERING

NAME OF THE SUBJECT: ENGINEERING MECHANICS	
SUBJECT CODE	: ME3351
REGULATION	2021

UNIT V: FRICTION

Friction:

Problem based on Friction:

1. A body weighting 1000 N is lying on a horizontal plane. Determine the necessary force to move the body along the plane if the force is applied at angle of 45° to the horizontal with the coefficient of friction 0.24

Given:

Coefficient of friction $\mu=0.24$
Weight of body $w=1000 N$
To find
Soln

Sum of X Direction Force $+\longrightarrow-\longleftarrow$
$\sum F_{x}=0$
$P \cos 45-F_{N}=0$
$P \cos 45-\mu \times N_{R}=0$
$P \cos 45-0.24 \times N_{R}=0$

Sum of Y direction force
$\sum F_{y}=0$
$N_{R}-1000+P \sin 45=0$
$N_{R}=1000+p \sin 45=0$
N_{R} value sub in Eqn(1)
$P \cos 45-0.24 \times[1000-P \sin 45]=0$
$P \cos 45-240+[P \sin 45 \times 0.24]=0$
$0.707 P+0.169 P=240$
$0.876 P=240$
$P=\frac{240}{0.876}$
$P=273 N$
P value sub in eqn (2)
$N_{R}=1000-273 \times \sin 45$
$N_{R}=806.95 \mathrm{~N}$

Problem: 2
A pull of 250 N inclined at 25° to the horizontal plane is required just to move a body kept on a rough horizontal plane. But the push required just to move the body is 300 N . If the push is inclined at 25° to the horizontal. Find the weight of the body and the coefficient of friction b / w the body and the plane.

Given:
$P_{1}=$ pull load $=250 \mathrm{~N}$ at 25°
$P_{2}=$ push load $=300 \mathrm{~N}$ at 25°
To find

Soln
Case (i)
Free body diagram

$\sum F_{x}=0$
$250 \cos 25^{\circ}-F_{N}=0$
$250 \cos 25^{\circ}-\mu \times N_{R 1}=0$
$226.57-\mu \times N_{R 1}=0$
$-\mu \times N_{R 1}=-226.57$
$\mu \times N_{R 1}=226.57$
Sum of Y directional force $\left.\left.\right|^{-}\right|^{+}+$
$\sum F_{y}=0$
$N_{R 1}-W+250 \sin 25=0$
$N_{R 1}=W-250 \sin 25$
$N_{R 1}=W-105.65$
Sub eqn (1), from eqn (1)
$\mu N_{R 1}=226.57$
$\mu=\frac{226.57}{N_{R 1}}$
$\mu=\frac{226.57}{W-105.65}$
Case (2) Free body diagram

Sum of X Directional force $\sum F_{x}=0$
$F_{N}-300 \cos 25^{\circ}=0$
$\mu N_{R 2}=300 \cos 25^{\circ \circ}$
$\mu N_{R 2}=271.89 \mathrm{~N}$
Sum of vertical force[Y direction] $\sum F_{y}=0$
$N_{R 2}-W-300 \sin 25^{\circ}=0$
$N_{R 2}=W+300 \sin 25^{\circ}$
$N_{R 2}=W+126.78$
$N_{R 2}$ value sub in Eqn (4)
$\mu N_{R 2}=271.89$
$\mu=\frac{271.89}{N_{R 2}}$
$\mu=\frac{271.89}{W+126.78}$
Eqn (3) $=\mathrm{Eqn}$ (5)

$$
\frac{226.57}{W-105.65}=\frac{271.89}{W+126.78}
$$

$226.57[W+126.78]=271.89[W-105.65]$
$226.57 W+28.72 \times 10^{3}=271.89 W-28.72 \times 10^{3}$
$226.57 \mathrm{~W}-271.89 \mathrm{~W}=-28.72 \times 10^{3}-28.72 \times 10^{3}$
$-45.32 W=-57.44 \times 10^{3}$
$W=\frac{57.44 \times 10^{3}}{45.32}$
$W=1267.43 N$
W value sub in eqn (3)
$\mu=\frac{226.57}{W-105.65}$
$\mu=\frac{226.57}{1267.43-105.65}$
$\mu=0.195$

Problem 3
Calculate the static coefficient of friction $\mu_{s} \mathrm{~b} / \mathrm{w}$ the block shown in fig having a mass of 75 kg and the surface. Also find the magnitude and direction of the friction force if the force P applied is inched at 45° to the horizontal and $\mu_{s}=0.30$

Given:

Weight $=75 \mathrm{~kg}=75 \times 9.81=735.75 \mathrm{~N}$
To find
Case (i) Coefficient of friction μ_{s}
Case (ii) Frictional force ' F_{N} ', Direction \emptyset

Soln

Case (i) free body diagram

Sum of all the X direction force $\sum F_{x}=0$
$300 \cos 30-F_{N}=0$
$300 \cos 30-\mu N_{R}=0$
$\mu N_{R}=-300 \cos 30$
$\mu N_{R}=259.8$
Sum of all the Y direction force $\sum F_{y}=0$
$-300 \sin 30-735.75+N_{R}=0$
$N_{R}=300 \sin 30+735.75$
$N_{R}=885.75 \mathrm{~N}$
N_{R} value sub in eqn(i)
$\mu N_{R}=259.8$
$\mu=\frac{259.8}{N_{R}}=\frac{259.8}{885.75}$
$\mu=0.29$
Case (ii) free body diagram

Sum of all the horizontal force [X direction] $\sum F_{x}=0$
$P \cos 45-F_{N}=0$
$-F_{N}=-P \cos 45$
$F_{N}=P \cos 45$
$\mu N_{R}=p \cos 45$
$N_{R}=\frac{p \cos 45}{\mu}=\frac{p \cos 45}{0.3}$
$N_{R}=2.35 p$
Sum of all the Direction force $\sum F_{y}=0$
$-p \sin 45-732.72+N_{R}=0$
$-p \times 0.7-735.72+2.35 p=0$
$-0.7 p+2.35 p=735.72$
$1.64 p=735.72$
$p=\frac{735.72}{1.64}$
$p=447.81 N$
$N_{R}=2.35 p$
$N_{R}=2.35 \times 447.81$
$N_{R}=1052.37 \mathrm{~N}$
$F_{N}=\mu \times R=0.3 \times 1052.37$
$F_{N}=315.71 \mathrm{~N}$
Direction \varnothing
$\emptyset=\tan ^{-1}\left[\frac{]}{N_{R}}\right.$
$\varnothing=\tan ^{-1}\left[\frac{315.71}{1052.37}\right]$
$\emptyset=16^{\circ} 41^{\prime}$

Problem 4:
Determine the smallest force P required to move the block B shown n fig below (i) block A is restrained by cable CD as shown in fig. (ii) Cable CD is removed. Take $\mu_{s}=0.30$ and $\mu_{k}=0.25$

Given:
$W_{A}=150 \mathrm{~kg}=150 \times 9.81=1471.5 \mathrm{~N}$
$W_{B}=225 \mathrm{~kg}=225 \times 9.81=2207.25 \mathrm{~N}$
$\mu_{s}=0.3$
$\mu_{k}=0.25$
To find
Force P
Soln
Block A is restrained by cable CD

Sum of X direction force $\sum=0$
$T_{C D}-F_{N}=0$
$T_{C D}-\mu_{S} N_{R 1}=0$
$T_{C D}=\mu_{s} N_{R 1}$
$T_{C D}=0.3 N_{R 1}$
Sum of vertical [Y direction force] $\sum F_{y}=0$
$N_{R 1}-W_{A}=0$
$N_{R 1}=W_{A}$
$N_{R 1}=1471.5 \mathrm{~N}$
$N_{R 1}$ value sub in eqn(i)
$T_{C D}=0.3 R_{1}$
$T_{C D}=0.3 \times 1471.3$
$T_{C D}=441.45 \mathrm{~N}$
Free body diagram of block B

Sum of X direction force
$F_{N_{s}}+F_{N_{k}}-p=0$
$\mu_{S} N_{R 1}+\mu_{k} N_{R 2}-p=0$
$p=\mu_{S} N_{R 1}+\mu_{k} N_{R 2}-------(1)$
Sum of Y direction force
$-1471.5-2207.25+N_{R 2}=0$

$$
N_{R 2}=1471.5+2207.25
$$

$$
N_{R 2}=3678.75 \mathrm{~N}
$$

$N_{R 2}$ value sub in Eqn (1)
$p=\mu_{S} N_{R 1}+\mu_{k} N_{R 2}$
$p=0.3 \times 1471.5+0.25 \times 3678.75$
$p=1361.14 N$
(i) Cable CD is removed

Both block is removed
Both the block will consider as a single body
$p=F_{N}$
$p=\mu_{k} N_{R 2}=0.25 \times 3678.75$
$p=919.68 N$
Problem-6
Two blocks A and B of mass 50 kg and 10 kg respectively are connected by a string c which passes through a frictionless pulley connected with the fixed wall by another string D as shown in fig. Find the force P required to pull the block B. also find the tension in the string D .

Take coefficient of friction at all contact surface as 0.3°

Given:
Weight of block $\mathrm{A} W_{A}=50 \mathrm{~kg}=50 \times 9.81=490.5 \mathrm{~N}$
Weight of block B $W_{B}=100 \mathrm{~kg}=100 \times 9.81=981 \mathrm{~N}$
Coefficient of friction $\mu=0.3$

To find
(i) Force P
(ii) Tension in string T_{D}

Soln
Free body diagram of block A

Sum of x direction forces $\sum F_{x}=0$
$-T_{c}-F_{N}=0$
$-T_{c}+\mu N_{R 1}=0$
$\mu N_{R 1}=T_{c}$
$N_{R 1}=\frac{T_{c}}{\mu}$
$N_{R 1}=\frac{T_{c}}{0.3}$
Sum of Y direction force $\sum F_{Y}=0$
$-W_{A}+N_{R 1}=0$
$N_{R 1}=W_{A}$
$N_{R 1}=490.5 \mathrm{~N}$
$N_{R 1}$ value sub in Eqn (1)
$N_{R 1}=\frac{T_{c}}{0.3}$
$490.5=\frac{T_{c}}{0.3}$
$T_{c}=147.15 \mathrm{~N}$

Consider block B

free body diagram

Sum of X direction force $\sum F_{x}=0$

$$
\begin{align*}
& p-T_{c}-F_{N 1}-F_{N 2}=0 \\
& p-\mu N_{R 1}+\mu N_{R 2}=0 \\
& p-147.15-0.3 \times 490.15-0.3 \times N_{R 2}=0 \\
& p-147.15-147.04-0.3 \times N_{R 2}=0 \\
& p-294.19-0.3 N_{R 2}=0 \\
& p=294.19-0.3 N_{R 2}=0 \\
& P=294.19+N_{R 2}----------(2) \tag{2}
\end{align*}
$$

Sum of Y direction force $\sum F_{Y}=0$

$$
N_{R 2}-W_{B}-W_{A}=0
$$

$$
N_{R 2}-981-490.5=0
$$

$$
N_{R 2}=1471.5 \mathrm{~N}
$$

$N_{R 2}$ value sub in eqn(2)
$p=294.19+0.3 N_{R 2}$
$p=294.19+0.3 \times 1471.5$
$p=735.64 N$

Tension in the string D :

$T_{c}+T_{c}-T_{D}=0$
$2 T_{c}-T_{D}=0$
$2 \times 147.15-T_{D}=0$
$294.3-T_{D}=0$
$-T_{D}=-294.3$
$T_{D}=294.3 \mathrm{~N}$
Problem - 7
A force of 300 n is required just to move a block up a plane inclined at 20°. To the horizontal, the force being applied parallel to the plane shown in fig. if the inclination of the plane is increased to 25°, the force required just to move the block up is 340 N , [the force is acting parallel to the plane]. Determine the weight of the block and coefficient of friction.

Given:
Case (i)
Weight of body $\mathrm{w}=$?
Force on body $\mathrm{P}=300 \mathrm{~N}$ at 20° inclined on plane horizontal
Case (ii)
Force on body $\mathrm{P}=340 \mathrm{~N}$ at 25°
To find:
Weight of body \& coefficient of friction

Soln:
Case (i) free body diagram

Sum of X directional force $\sum F_{X}=0$
$300+w \cos 70-F_{N}=0$
$300+w \cos 70-\mu N_{R 1}=0$
$-N_{R 1}=-[300+w \cos 70]$
$\mu N_{R 1}=300+w \cos 70$
$\mu=\frac{300+w \cos 70}{N_{R 1}}$
Sum of all Y direction force $\sum=0$
$N_{R 1}-w \sin 70=0$
$N_{R 1}=w \sin 70$
$N_{R 1}$ value sub in eqn (1)
$\mu=\frac{300+w \cos 70}{w \sin 70}$
Case (ii) consider block 2

Sum of all the X direction force $\sum F_{X}=0$
$340+w \cos 65-F_{N}=0$
$340+w \cos 65-\mu N_{R 2}=0$
$-\mu N_{R 2}=-[340+w \cos 65]$
$\mu=\frac{340+w \cos 65}{N_{R 2}}$
Sum of all the Y direction force $\sum F_{Y}=0$
$N_{R 2}-w \sin 65=0$
$N_{R 2}=w \sin 65-$
Eqn (5) sub in eqn (4)
$\mu=\frac{340+w \cos 65}{w \sin 65}$
$\operatorname{Eqn}(3)=$ eqn (6)
$\frac{300+w \cos 70}{w \sin 70}=\frac{340+w \cos 65}{w \sin 65}$
$[300+w \cos 70] \times w \sin 65=w \sin 70[340+w \cos 65]$
$271.89 w+w^{2} \times 0.309=319 w+0.39 w^{2}$
$271.86 w-319 w=0.39 w^{2}-0.3 w^{2}$
$-47.11 w=0.09 w^{2}$
$-47.11 w=0.09 w$
$w=\frac{-47.11}{0.09}$
ans $w=-523.47 N$
w value sub in eqn(3)
$\mu=\frac{300+w \cos 70}{w \sin 70}$
$\mu=\frac{300+(-523.47) s 70}{(-523.47) \sin 70}$
Ans $\mu=-0.24$

Problem 8

A block weighting 360 n is resting on a rough inclined plane having an inclination of 30°. A force of 12 N is applied at an angle of 10° up and the block is just on the point of moving down the plane. Determine the coefficient of friction

Given:
Block weight w=36 N
Inclination of the plane $\varnothing=30^{\circ}$
Force on block $\mathrm{P}=12 \mathrm{~N}$ at 10°

To find
Coefficient of friction μ
Soln:
Free body diagram

Sum of X direction force $\sum F_{X}=0$
$-12 \cos 10-36 \cos 60+F_{N}=0$
$-11.87-18+\mu N_{R}=0$
$-29.87+\mu N_{R}=0$
$\mu N_{R}=29.87$
$\mu=\frac{29.87}{N_{R}}$
Sum of all the Y direction force $\sum F_{y}=0$
$-12 \sin 10^{\circ}+N_{R}-36 \sin 60^{\circ}=0$
$-2.083+N_{R}-31.17=0$
$N_{R}-33.25=0$
$N_{R}=33.25 \mathrm{~N}$
N_{R} value sub in Eqn (1)
$\mu=\frac{29.87}{N_{R}}=\frac{29.87}{33.25}$
ans $\mu=0.89$

