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GENETIC ALGORITHM 

Genetic Algorithms (GAs), originally introduced by John Holland have been 

popularized as universal optimization algorithms based on evolutionary methods. The most 

remarkable difference between Evolution Strategies and Genetic Algorithms is that GAs 

use a string-based, usually binary parameter encoding, resembling the discrete nucleotide 

coding scheme on cellular chromosomes. Therefore, GA genotypes can be defined as bit-

vectors (bit-strings), on which point mutations are defined by switching bits with a certain 

probability. A recombinational operator of crossover, models the breaking of two 

chromosomes and subsequent crosswise restituation. Each individual is assigned a fitness 

value depending on the optimization task to be solved. Selection within the population is 

performed in a fitness-proportionate way: The more fit an individual, the more likely it is 

to be chosen for reproduction into the following generation. 

Representation of Genotypes: 

Nature encodes "growth programs", which describe the development of organisms, 

on the basis of a four-element alphabet, called the nucleotide bases A, C, G, and T on the 

DNA (deoxyribo nucleic acid) or A, C, G, and U on the RNA (ribonucleic acid) strands 

comprising the cellular genome. Binary alphabets are the preferred encoding used for 

Genetic Algorithm chromosomes.  

Haploid GA Chromosomes 

In its simplest form, a GA chromosome can be described as a haploid string, i.e., a 

single strand with alleles(one of two or more alternative forms of a gene that arise by 

mutation and are found at the same place on a chromosome.) over a k-element alphabet A 

= {ai,... ,ak}- Therefore, we define a single GA chromosome of length n as a vector g of the 

form 

g = (g1 ,... , gn) with gi ∈ A for 1 ≤ i ≤ n 

Such a GA chromosome can be interpreted as a sequence of genes. Each gene is 

represented by its allele which exhibits a specific value from a discrete pool of possible 

settings A. Each gene locus i does not have its own alphabet Ai. Instead, all genes take their 

values from the same allele pool A. 

Diploid and m-ploid GA Chromosomes 



The notion of a single chromosome strand is easily extended to a polyploid 

chromosome with several strands. a diploid pair of chromosomes is represented as g1 = 

(g11,... , g1n) and g2 = (g21,... , g2n) by the following structure.  

 

For each locus i the pair (i, (g1i , g2i)) contains the locus index as its first component, 

the list of respective alleles of two chromosome strands gi and g2, each with n components 

as second. Polyploid or m-ploid chromosomes with m homologous strands, i.e., strands of 

equal length n, as follows: 

 

Mutations on GA Chromosomes: 

Mutations in combination with recombinations are the driving forces of evolution. 

We first consider simple point-mutations on a GA chromosome g = (g1 ,... , gn) as taken 

from a discrete alphabet A = {a1,..., ak}. Point mutations change the settings of genes at 

randomly selected gene locations. For each gene, its allele is replaced by a new value from 

A with mutation probability pm. The mutation operator ωmut :=GA → GA, with GA denoting 

the set of all GA chromosomes over alphabet A, generates a new chromosome g' = ωmut 

(g) = ωmut ((g1 ,... , gn))= (g1′ ,... , gn′) as follows: 

 
Here χ is a uniformly distributed random variable from the interval [0,1]. The 

probability for a mutation per gene locus is denoted by pm 

 
Mutations on a polyploid set of single-strand chromosomes is defined as,  

 
consisting of m homologous single chromosome strands of the form 

gi = (gi1,... , gin) with 1 ≤ i ≤ n 

Recombinations among GA Chromosomes 



GA chromosomes are mostly defined over a discrete allele alphabet, all the discrete 

variants of recombination operators for Evolution Strategies can be used here as well. For 

m homologous, haploid GA chromosomes g1 = (g11,... , g1n) , .... , gm = (gm1,... , gmn) a 

recombined GA chromosome ̂ rec can be composed with the help of a recombination mask 

μ = (μ1, μ2 ,.... , μn ) 

 
The i-th component of grec is therefore the μi-th element from the set of "genes" 

{g11,... , g1n} 

The GA recombination operator - binary GA crossover plays an important role in the early 

for mutations and implementations of Genetic Algorithms.  

One-Point crossover: 

If the recombination mask μ has the special property which contains only two 

different elements, i1 and i2, from the index set {1 , …. , m} and there is exactly one index 

k ∈  {1,... ,n - 1} such that (μ1, μ2 ,.... , μk) = i1 and (μk+1, μk+2 ,.... , μn) = i2. 

Different types of cross over are: 

Single-point and two-point crossover 

Parametrized uniform crossover operators - similar to global ES recombination 

schemes.  

Segmented and shuffle crossover work in a way similar to multi-point crossover. 

Punctuated crossover is one of the very few attempts to introduce self-adaptive strategy 

parameters into Genetic Algorithms 

 

GA Operators 

The two major GA operators, recombination as the primary and mutation as the 

secondary operator. Some more operators such as inversion, duplication, and deletion are 

also used. 

We assume a haploid GA chromosome of the form 

 
 

 

 

Inversion 



On natural genomes, an inversion occurs when a chromosome is split twice, after locus i1  

- 1 and before i2 + 1, and the resulting middle section (gi1,... , gi2) is reinserted into the 

strand in reverse order: 

 
Duplication 

A side effect of crosswise recombination of two homologous chromosomes is the 

duplication and deletion of subsections on the genome. Formally, the insertion of a copy 

of a gene sequence (gi1,... , gi2) can be defined as follows: 

 
Deletion 

The duplication operator is mainly applied in conjunction with its counterpart, the deletion 

operator. Here a chromosome loses a gene sequence (gi1,... , gi2): 

 
 

Selection Functions 

The selection functions define the "who shall live and who shall die" filters that all 

individuals pass through from one generation to the next. The Evolution Strategy's 

traditional selection procedure is done for survival of the best, but Genetic Algorithms 

apply a more "natural" selection scheme. In nature, an individual's probability of survival 

is influenced by an abundance of factors. However, it is not at all the case that only "the 

most fit" individuals survive. In fact, even less adapted, hence less fit, individuals have a 

chance to reproduce and transfer their genes to their progeny. Their genes survive into the 

next generations with certain probability. 

Fitness Proportionate Selection: 

For a population G = {g1,... ,gμ} of size μ with each individual gi assigned a non-

negative fitness value η(gi) ∈ Kj, the probability Psel(σprop, gi) for an individual to be 

selected fitness-proportionately is defined as 

 

Here η∑(G) denotes the sum of all fitnesses of the population. The probability of 

an individual to be reproduced into the next generation is directly proportional to its fitness, 

hence it is fitness proportionate selection. 

Rank-Based Selection 



If the population size is small (much less than 100 individuals), with only these few super-

individuals. Thus the gene pool loses its heterogeneity and is reduced to only a small set of 

search points. One remedy for this situation is to reduce the fitness differences among the 

individuals by assigning ranks to the individuals instead of using their actual fitness values. 

Just as in a tournament of μ competitors, the winner receives rank 1, the second best is 

assigned rank 2, etc., until the least fit individual ranks at μ. 

The μ individuals are sorted in increasing fitness order such that η(gi) ≤ η(gj) for all 1 

≤ i < j ≤ μ. If ρ(g) denotes the rank of individual g ∈ G within this 

sorted sequence, its fitness ηrank(g) is defined by 

 
so that the rank-based selection probability is 

 
Elitist Selection 

The elitist selection scheme is the one used for selection with Evolution Strategies 

and can be used for Genetic Algorithms, too. For the (μ, λ) or (μ + λ) strategies, the best 

μ individuals from the set of mutants in the pool of λ or μ + λ individuals are selected as 

the parents of the next generation. The GA elitist selection scheme implements exactly this 

selection method. 

 

The best δ individuals (usually δ ≪ μ) are selected, each is assigned the same 

fitness of 1/δ, and fitness proportionate selection is performed, which results in a random 

selection among these δ individuals. 

Random Selection 

Sometimes, individuals g ∈ G are selected by pure random choice, 

 

Here μ denotes the number of individuals in generation G. 

 

 

 

GA Evolution Scheme 



GA evolution starts with a randomly generated initial population of μ genotypic 

structures. After interpretation and evaluation, the population enters a selection-variation 

cycle which is iterated for either a maximum number of generations or until some 

termination criterion (τ) is met.  

 

The canonical Genetic Algorithm performs a (μ/2, μ) strategy. From the pool of μ 

parents λ = μ pairs of individuals are selected for recombination (crossover) and 

subsequent mutation. The resulting individuals represent the parents of the next generation. 

The individuals are not selected at random from the parent pool but according to one of the 

GA selection functions σ. 

 
GENETIC PROGRAMMING 

Genetic Programming (GP) is certainly one of the major steps towards automatic 

programming using evolutionary principles. The term genetic programming was coined by 

John Koza, who initially introduced his evolutionary programming approach as a 

"hierarchical genetic algorithm" and later on switched to a symbolic representation for 

evolving LISP programs. The main contribution of Koza's research group is documented 

by a three-volume treatise, demonstrating that Genetic Programming can successfully be 

applied to induce computer programs in a wide range of areas, such as symbolic regression 

or learning boolean parity functions, the evolution of emergent behavior, the evolution of 

robot control programs, the evolution of classifiers for prediction of transmembrane 

domains and omega loops in proteins, or the recent work on evolution of analog electrical 

circuits. The successful use of tree structures to represent data and program instructions 



has led to an immediate association of Genetic Programming with symbolic expressions, 

although many more encoding schemes can be used and actually are used for automatic 

programming by evolution. The following items characterize the field of Genetic 

Programming in a broader sense: 

Program Induction: Genetic Programming deals with the induction of computer 

programs using evolutionary principles. The programs can be either directly executable 

(machine) code or expressions — data and/or instructions — of any programming 

language. 

Learning Algorithms: Not all learning algorithms are explicitly represented as programs 

in a strict sense, such as neural networks and learning fuzzy systems. Algorithms for 

adapting these data structures (neuron weights, activation functions, fuzzy rule parameters, 

etc.) are also in the domain of Genetic Programming. 

Representation: There are many different ways of representing programs, for example, 

by linear, string-based structures, by tree-like symbolic expressions, by growth grammars, 

or by graphs. 

Operators: Selection operators are used to designate the survivors among the population 

of competing programs. Reproduction operators are used in conjunction with 

recombination operators, generating new variants by, primarily, mutation and crossover, 

or further operators, such as permutation, deletion, duplication, or encapsulation. 

Representation of Computer Programs by Symbolic Expressions 

Programs evolved by a tree-based GP system are typically composed from a finite 

set F of building blocks, the functions 

 

where ሀ(F) denotes the arities of the function symbols, and the terminals 

T={t1, t2, ….. , tM} 

Considering the terminals as function symbols of arity zero, both sets can be merged into 

a single set of elementary building blocks: 

S = F U T 

The set GPterms of program trees, representing the GP search space, can be defined as 

follows: 

1. Each terminal t ∈ S with ሀ(t) = 0 is an element of GPterms 

2. For each f ∈ S with ሀ(f) = n and g1,...,gn ∈ GPterms , the term f(g1,.. . ,gn) is also an 

element of GPterms 

The GP encoding of the structures to be evolved has an important impact on whether the 

evolutionary approach will succeed or not. The choice of functions and terminals also 



influences the potential of the genetic operators to create innovative and optimized program 

structures. 

Given the set of building blocks 

S = {Mult2, Add2,If-Then-Else3,Equal2,Ao,Bo,Co,Do} 

Where indices in S denote the arities of the symbols. 

 
The above Figure illustrates the recursive, step-by-step construction of a random 

program term, an element of GPterms- A symbol from S is randomly selected (If-Then-

Else) as the root of the expression tree. At each of the branches, further subterms have to 

be composed by further random selection from S. This procedure is repeated until all leaf 

nodes are labeled with terminals. 

The depth of the generated expression tree is not constrained, although one usually 

defines a maximum tree depth and width in order to reduce memory requirements for 

storage and evaluation time of the program term. Furthermore, the symbol set S has to be 

closed with respect to composition. Each symbol must be combinable with any other 

symbol, so that the final expression is always syntactically correct and can be interpreted 

as a proper program or data structure. 

S = {Mult(int,int)→ int , If-Then-Else(bool,int,int) → int  , Equal(int,int)→ bool , . . .} . 

Mutations on Symbolic Expressions 

The GP mutation operators come in a great number of varieties. Basically, subterms 

or leaves of a tree structure are substituted by either newly generated or duplicated terms 

or terminals.  

 



 
The above figure gives a brief overview of mutation operators on tree structured 

expressions. 

● Point Mutation A point mutation (b) exchanges a single node by a random node of 

the same class. In the simplest case this means that terminals are substituted by 

terminals, and function symbols are substituted by function symbols with the same 

arity (and types, if applicable). 

● Permutation A permutation (c) merely permutes the sequence of arguments of a 

node. The hoist operator (d) substitutes the whole tree by a randomly selected proper 

subtree (terminals are not in the scope of selection). 

● Collapse Subtree Mutation With the collapse subtree mutation (e) a subtree is 

replaced by a random terminal. 

● Expansion Mutation The inverse operation is the expansion mutation (f) where a 

terminal is exchanged against a random, newly generated subtree. 

● Duplication The duplication operator (g) replaces a terminal node with a copy of a 

proper subtree. 

● Subtree Mutation The most general mutation operator is defined by subtree 

mutation (h), where a subtree is substituted with a newly generated subtree. 

Crossover of Symbolic Expressions 

Another important operator used in GP for generating new term structures is a 

variant of the one-point crossover known from Genetic Algorithms. By crossing two linear 

GA chromosomes, substrings are exchanged between the chromosomes. An analogous 

recombination operator for GP terms is defined by interchanging (sub)trees between two 

GP terms.   



 
The above figure shows the simplest crossover version known as subtree exchange 

crossover, which is performed as follows: For each term a node is chosen at random. Inner 

nodes (including the root) as well as leaves are selectable. In Figure, the selected subtrees 

are marked by triangular shapes. The two recombined terms result from a mutual exchange 

of the selected sub-expressions. 

In comparison to the crossover or recombination operators of Genetic Algorithms 

or Evolution Strategies, an interesting aspect of GP crossover is the following. Even for a 

recombination among two identical trees, the GP crossover (self crossover) results in a pair 

of new structures whenever the two crossover nodes differ.  

GA crossover for identical chromosomes is reduced to a simple reproduction 

operator without changing the structures. As the GA crossover operator enhances the 

similarity among the strings, mutation operators are essentially needed to introduce new 

allele settings into the genepool.  

Several variants for GP crossover have been developed, such as context preserving 

crossover (CPC), where subtrees are exchanged only if either their node coordinates match 

exactly (strong CPC) or match approximately (weak CPC). With module crossover, 

parametrized sub-trees are exchanged between two individual structures. The modules are 

comparable to parameterized macros in programming languages like C. One variant of 

module crossover is known as encapsulation and decapsulation. An extension of this 

approach denoted as macro extraction. 

G P Evolution Scheme 

For canonical Genetic Programming a slightly modified GA evolution scheme is 

used. The scheme depicted in the below figure is a slight modification of the basic GP 

algorithm and is better compared to the GA and ES schemes. The comma as well as the 

plus reproduction scheme can be used.  

 



 
The above figure depicts the comma scheme where parents are not part of the selection 

pool. A notable extension of the GP evolution scheme is the operator pool, which contains 

a set of genetic operators, each attributed by a selection probability. 

One reproduction cycle works as follows:  

● First, a genetic operator is selected from the operator pool.  

● Secondly, depending on the arity n of the operator, n individuals are chosen by a fitness-

proportionate selection function (n = 1 for reproduction and mutation, n > 2 for 

crossover).  

● After applying the operators, the new program structures are evaluated and constitute 

the selection pool for the parents of the following generation. 

 

 

 


