
 UNIT V R LANGUAGE 
 Overview,  Programming  structures:  Control  statements  -  Operators  -  Functions  - 
 Environment  and  scope  issues  -  Recursion  -Replacement  functions,  R  data  structures: 
 Vectors  -  Matrices  and  arrays  -  Lists  -Data  frames  -Classes,  Input/output,  String 
 manipulations 

 OVERVIEW OF R PROGRAMMING 
 R  is  a  programming  language  and  software  environment  for  statistical  analysis, 

 graphics  representation  and  reporting.  R  was  created  by  Ross  Ihaka  and  Robert 
 Gentleman  at  the  University  of  Auckland,  New  Zealand,  and  is  currently  developed  by 
 the R Development Core Team. 

 The  core  of  R  is  an  interpreted  computer  language  which  allows  branching  and 
 looping  as  well  as  modular  programming  using  functions.  R  allows  integration  with  the 
 procedures written in the C, C++, .Net, Python or FORTRAN languages for efficiency. 

 R  is  freely  available  under  the  GNU  General  Public  License,  and  pre-compiled 
 binary  versions  are  provided  for  various  operating  systems  like  Linux,  Windows  and 
 Mac.  R  is  free  software  distributed  under  a  GNU-style  copy  left,  and  an  official  part  of 
 the GNU project called GNU S. 
 Evolution of R 

 R  was  initially  written  by   Ross  Ihaka   and   Robert  Gentleman   at  the  Department 
 of  Statistics  of  the  University  of  Auckland  in  Auckland,  New  Zealand.  R  made  its  first 
 appearance in 1993. 
 ●  A large group of individuals has contributed to R by sending code and bug reports. 
 ●  Since  mid-1997  there  has  been  a  core  group  (the  "R  Core  Team")  who  can  modify  the 

 R source code archive. 
 Features of R 
 As  stated  earlier,  R  is  a  programming  language  and  software  environment  for  statistical 
 analysis,  graphics  representation  and  reporting.  The  following  are  the  important  features 
 of R 
 ●  R  is  a  well-developed,  simple  and  effective  programming  language  which  includes 

 conditionals, loops, user defined recursive functions and input and output facilities. 
 ●  R has an effective data handling and storage facility, 
 ●  R provides a suite of operators for calculations on arrays, lists, vectors and matrices. 
 ●  R provides a large, coherent and integrated collection of tools for data analysis. 
 ●  R  provides  graphical  facilities  for  data  analysis  and  display  either  directly  at  the 

 computer or printing at the papers. 



 Basic operations of R 
 1+1  [1] 2 
 2*3  [1] 6 
 1==1  [1] TRUE 
 3<4  [1] TRUE 
 2+2==5  [1] FALSE 

 Variables 
 R is case Sensitive 

 x<-42 
 x/2 
 > x<-42 
 x<-"ABC" 
 > x 
 [1] "ABC" 

 x> x/2 
 [1] 21 
 > x 
 [1] 4 

 Control  statements  are  expressions  used  to  control  the  execution  and  flow  of  the 
 program  based  on  the  conditions  provided  in  the  statements.  These  structures  are  used  to 
 make  a  decision  after  assessing  the  variable.  In  this  article,  we’ll  discuss  all  the  control 
 statements with the examples. 
 In  R programming  , there are 8 types of control statements  as follows: 

 ●  if condition 
 ●  if-else condition 
 ●  for loop 
 ●  nested loops 
 ●  while loop 
 ●  repeat and break statement 
 ●  return statement 
 ●  next statement 

 if condition 
 This  control  structure  checks  if  the  expression  provided  in  parenthesis  is  true  or 

 not. If true, the execution of the statements in braces {} continues. 
 Syntax: 
 if(expression){ 

 statements 
 .... 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/control-statements-in-r-programming/#ifstatement
https://www.geeksforgeeks.org/control-statements-in-r-programming/#if-else
https://www.geeksforgeeks.org/control-statements-in-r-programming/#forloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#nestedloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#whileloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#repeatandbreak
https://www.geeksforgeeks.org/control-statements-in-r-programming/#return
https://www.geeksforgeeks.org/control-statements-in-r-programming/#next


 .... 
 } 
 Example: 
 x <- 100 

 if(x > 10){ 
 print(paste(x, "is greater than 10")) 
 } 
 Output: 
 [1] "100 is greater than 10" 
 if-else condition 

 It  is  similar  to  if  condition  but  when  the  test  expression  in  if  condition  fails,  then 
 statements in else condition are executed. 
 Syntax: 
 if(expression){ 

 statements 
 .... 
 .... 

 } 
 else{ 

 statements 
 .... 
 .... 

 } 
 Example: 
 x <- 5 
 # Check value is less than or greater than 10 
 if(x > 10){ 
 print(paste(x, "is greater than 10")) 

 }else{ 
 print(paste(x, "is less than 10")) 

 } 
 Output: 
 [1] "5 is less than 10" 
 for loop 

 It  is  a  type  of  loop  or  sequence  of  statements  executed  repeatedly  until  exit 
 condition is reached. 



 Syntax: 
 for(value in vector){ 

 statements 
 .... 
 .... 

 } 
 Example: 
 x <- letters[4:10] 
 for(i in x){ 
 print(i) 

 } 
 Output: 
 [1] "d" 
 [1] "e" 
 [1] "f" 
 [1] "g" 
 [1] "h" 
 [1] "i" 
 [1] "j" 
 Nested loops 

 Nested  loops  are  similar  to  simple  loops.  Nested  means  loops  inside  loop. 
 Moreover, nested loops are used to manipulate the matrix. 
 Example: 
 # Defining matrix 
 m <- matrix(2:15, 2) 
 for (r in seq(nrow(m))) { 
 for (c in seq(ncol(m))) { 
 print(m[r, c]) 

 } 
 } 
 Output: 
 [1] 2 
 [1] 4 
 [1] 6 
 [1] 8 
 [1] 10 
 [1] 12 



 [1] 14 
 [1] 3 
 [1] 5 
 [1] 7 
 [1] 9 
 [1] 11 
 [1] 13 
 [1] 15 
 while loop 

 while  loop  is  another  kind  of  loop  iterated  until  a  condition  is  satisfied.  The  testing 
 expression is checked first before executing the body of loop. 
 Syntax: 
 while(expression){ 

 statement 
 .... 
 .... 

 } 
 Example: 
 x = 1 
 # Print 1 to 5 
 while(x <= 5){ 
 print(x) 
 x = x + 1 

 } 
 Output: 
 [1] 1 
 [1] 2 
 [1] 3 
 [1] 4 
 [1] 5 
 repeat loop and break statement 

 repeat  is  a  loop  which  can  be  iterated  many  number  of  times  but  there  is  no  exit 
 condition  to  come  out  from  the  loop.  So,  break  statement  is  used  to  exit  from  the  loop. 
 break statement can be used in any type of loop to exit from the loop. 
 Syntax: 
 repeat { 

 statements 



 .... 
 .... 
 if(expression) { 

 break 
 } 

 } 
 Example: 
 x = 1 

 # Print 1 to 5 
 repeat{ 
 print(x) 
 x = x + 1 
 if(x > 5){ 
 break 
 } 

 } 
 Output: 
 [1] 1 
 [1] 2 
 [1] 3 
 [1] 4 
 [1] 5 
 return statement 

 return  statement  is  used  to  return  the  result  of  an  executed  function  and  returns 
 control to the calling function. 
 Syntax: 
 return(expression) 

 Example: 
 func <- function(x){ 
 if(x > 0){ 
 return("Positive") 

 }else if(x < 0){ 
 return("Negative") 

 }else{ 
 return("Zero") 



 } 
 } 
 func(1) 
 func(0) 
 func(-1) 
 Output: 
 [1] "Positive" 
 [1] "Zero" 
 [1] "Negative" 
 next statement 

 next  statement  is  used  to  skip  the  current  iteration  without  executing  the  further 
 statements and continues the next iteration cycle without terminating the loop. 
 Example: 
 # Defining vector 
 x <- 1:10 
 # Print even numbers 
 for(i in x){ 
 if(i%%2 != 0){ 
 next #Jumps to next loop 

 } 
 print(i) 

 } 
 Output: 
 [1] 2 
 [1] 4 
 [1] 6 
 [1] 8 
 [1] 10 

 OPERATORS 
 R  supports  majorly  four  kinds  of  binary  operators  between  a  set  of  operands.  In 

 this  article,  we  will  see  various  types  of  operators  in  R  Programming  language  and  their 
 usage. 
 Types of the operator in R language 
 ●  Arithmetic Operators 
 ●  Logical Operators 
 ●  Relational Operators 

https://www.geeksforgeeks.org/r-programming-language-introduction/
https://www.geeksforgeeks.org/r-operators/#arithmetic-operators
https://www.geeksforgeeks.org/r-operators/#logical-operators
https://www.geeksforgeeks.org/r-operators/#relational-operators


 ●  Assignment Operators 
 ●  Miscellaneous Operators 
 Arithmetic Operators 

 Arithmetic  Operators  modulo  using  the  specified  operator  between  operands, 
 which  may  be  either  scalar  values,  complex  numbers,  or  vectors.  The  R  operators  are 
 performed element-wise at the corresponding positions of the vectors. 
 1.  Addition operator (+) 

 The  values  at  the  corresponding  positions  of  both  operands  are  added.  Consider 
 the following R operator snippet to add two vectors: 
 a <- c (1, 0.1) 
 b <- c (2.33, 4) 
 print (a+b) 
 Output :  3.33  4.10 

 2.  Subtraction Operator (-) 
 The  second  operand  values  are  subtracted  from  the  first.  Consider  the  following  R 
 operator snippet to subtract two variables: 
 a <- 6 
 b <- 8.4 
 print (a-b) 
 Output :  -2.4 

 3.  Multiplication Operator (*) 
 The  multiplication  of  corresponding  elements  of  vectors  and  Integers  are 
 multiplied with the use of the ‘*’ operator. 
 B= c(4,4) 
 C= c(5,5) 
 print (B*C) 
 Output :  20 20 

 4.  Division Operator (/) 
 The first operand is divided by the second operand with the use of the ‘/’ operator. 
 a <- 10 
 b <- 5 
 print (a/b) 
 Output :  2 

 5.  Power Operator (^) 
 The first operand is raised to the power of the second operand. 
 a <- 4 
 b <- 5 

https://www.geeksforgeeks.org/r-operators/#assignment-operators
https://www.geeksforgeeks.org/r-operators/#miscellaneous-operators
https://www.geeksforgeeks.org/r-operators/#Arithmetic%20Operators


 print(a^b) 
 Output :  1024 

 6.  Modulo Operator (%%) 
 The remainder of the first operand divided by the second operand is returned. 
 list1<- c(2, 22) 
 list2<-c(2,4) 
 print(list1 %% list2) 
 Output :  0  2 

 # R program to illustrate the use of Arithmetic operators 
 vec1 <- c(0, 2) 
 vec2 <- c(2, 3) 
 cat ("Addition of vectors :", vec1 + vec2, "\n") 
 cat ("Subtraction of vectors :", vec1 - vec2, "\n") 
 cat ("Multiplication of vectors :", vec1 * vec2, "\n") 
 cat ("Division of vectors :", vec1 / vec2, "\n") 
 cat ("Modulo of vectors :", vec1 %% vec2, "\n") 
 cat ("Power operator :", vec1 ^ vec2) 

 Output 
 Addition of vectors : 2 5 
 Subtraction of vectors : -2 -1 
 Multiplication of vectors : 0 6 
 Division of vectors : 0 0.6666667 
 Modulo of vectors : 0 2 
 Power operator : 0 8 

 Logical Operators 
 Logical  Operators  in  R  simulate  element-wise  decision  operations,  based  on  the 

 specified  operator  between  the  operands,  which  are  then  evaluated  to  either  a  True  or 
 False  boolean  value.  Any  non-zero  integer  value  is  considered  as  a  TRUE  value,  be  it  a 
 complex or real number. 
 1.  Element-wise Logical AND operator (&) 

 Returns True if both the operands are True. 
 list1 <- c(TRUE, 0.1) 
 list2 <- c(0,4+3i) 
 print(list1 & list2) 
 Output :  FALSE   TRUE 

https://www.geeksforgeeks.org/r-operators/#Logical%20Operators


 Any  non  zero  integer  value  is  considered  as  a  TRUE  value,  be  it  complex  or  real 
 number. 

 2.  Element-wise Logical OR operator (|) 
 Returns True if either of the operands is True. 
 list1 <- c(TRUE, 0.1) 
 list2 <- c(0,4+3i) 
 print(list1|list2) 
 Output :  TRUE  TRUE 
 NOT operator (!) 
 A unary operator that negates the status of the elements of the operand. 
 list1 <- c(0,FALSE) 
 print(!list1) 
 Output :  TRUE  TRUE 

 3.  Logical AND operator (&&) 
 Returns True if both the first elements of the operands are True. 
 list1 <- c(TRUE, 0.1) 
 list2 <- c(0,4+3i) 
 print(list1[1] && list2[1]) 
 Output :  FALSE 
 Compares just the first elements of both the lists. 

 4.  Logical OR operator (||) 
 Returns True if either of the first elements of the operands is True. 
 list1 <- c(TRUE, 0.1) 
 list2 <- c(0,4+3i) 
 print(list1[1]||list2[1]) 
 Output :  TRUE 

 # R program to illustrate the use of Logical operators 
 vec1 <- c(0,2) 
 vec2 <- c(TRUE,FALSE) 
 # Performing operations on Operands 
 cat ("Element wise AND :", vec1 & vec2, "\n") 
 cat ("Element wise OR :", vec1 | vec2, "\n") 
 cat ("Logical AND :", vec1[1] && vec2[1], "\n") 
 cat ("Logical OR :", vec1[1] || vec2[1], "\n") 
 cat ("Negation :", !vec1) 
 Output 



 Element wise AND : FALSE FALSE 
 Element wise OR : TRUE TRUE 
 Logical AND : FALSE 
 Logical OR : TRUE 
 Negation : TRUE FALSE 

 Relational Operators 
 The  Relational  Operators  in  R  carry  out  comparison  operations  between  the 

 corresponding  elements  of  the  operands.  Returns  a  boolean  TRUE  value  if  the  first 
 operand  satisfies  the  relation  compared  to  the  second.  A  TRUE  value  is  always 
 considered to be greater than the FALSE. 
 1.  Less than (<) 

 Returns  TRUE  if  the  corresponding  element  of  the  first  operand  is  less  than  that  of 
 the second operand. Else returns FALSE. 
 list1 <- c(TRUE, 0.1,"apple") 
 list2 <- c(0,0.1,"bat") 
 print(list1<list2) 
 Output :  FALSE FALSE  TRUE 

 2.  Less than equal to (<=) 
 Returns  TRUE  if  the  corresponding  element  of  the  first  operand  is  less  than  or 
 equal to that of the second operand. Else returns FALSE. 
 list1 <- c(TRUE, 0.1, "apple") 
 list2 <- c(TRUE, 0.1, "bat") 
 # Convert lists to character strings 
 list1_char <- as.character(list1) 
 list2_char <- as.character(list2) 
 # Compare character strings 
 print(list1_char <= list2_char) 
 Output :  TRUE TRUE TRUE 

 3.  Greater than (>) 
 Returns  TRUE  if  the  corresponding  element  of  the  first  operand  is  greater  than 
 that of the second operand. Else returns FALSE. 
 list1 <- c(TRUE, 0.1, "apple") 
 list2 <- c(TRUE, 0.1, "bat") 
 print(list1_char > list2_char) 
 Output :  FALSE FALSE FALSE 

 4.  Greater than equal to (>=) 

https://www.geeksforgeeks.org/r-operators/#Relational%20Operators


 Returns  TRUE  if  the  corresponding  element  of  the  first  operand  is  greater  or  equal 
 to that of the second operand. Else returns FALSE. 
 list1 <- c(TRUE, 0.1, "apple") 
 list2 <- c(TRUE, 0.1, "bat") 
 print(list1_char >= list2_char) 
 Output :  TRUE TRUE FALSE 

 5.  Not equal to (!=) 
 Returns  TRUE  if  the  corresponding  element  of  the  first  operand  is  not  equal  to  the 
 second operand. Else returns FALSE. 
 list1 <- c(TRUE, 0.1,'apple') 
 list2 <- c(0,0.1,"bat") 
 print(list1!=list2) 
 Output :  TRUE FALSE TRUE 

 The following R code illustrates the usage of all Relational Operators in R: 
 # R program to illustrate the use of Relational operators 
 vec1 <- c(0, 2) 
 vec2 <- c(2, 3) 
 cat ("Vector1 less than Vector2 :", vec1 < vec2, "\n") 
 cat ("Vector1 less than equal to Vector2 :", vec1 <= vec2, "\n") 
 cat ("Vector1 greater than Vector2 :", vec1 > vec2, "\n") 
 cat ("Vector1 greater than equal to Vector2 :", vec1 >= vec2, "\n") 
 cat ("Vector1 not equal to Vector2 :", vec1 != vec2, "\n") 
 Output 
 Vector1 less than Vector2 : TRUE TRUE 
 Vector1 less than equal to Vector2 : TRUE TRUE 
 Vector1 greater than Vector2 : FALSE FALSE 
 Vector1 greater than equal to Vector2 : FALSE FALSE 
 Vector1 not equal to Vector2 : TRUE TRUE 
 Assignment Operators 

 Assignment  Operators  in  R  are  used  to  assign  values  to  various  data  objects  in  R. 
 The  objects  may  be  integers,  vectors,  or  functions.  These  values  are  then  stored  by  the 
 assigned variable names. There are two kinds of assignment operators: Left and Right 
 1.  Left Assignment (<- or <<- or =) 

 Assigns a value to a vector. 
 vec1 = c("ab", TRUE) 
 print (vec1) 
 Output :  "ab"   "TRUE" 

https://www.geeksforgeeks.org/r-operators/#Assignment%20Operators


 2.  Right Assignment (-> or ->>) 
 Assigns value to a vector. 
 c("ab", TRUE) ->> vec1 
 print (vec1) 
 Output :  "ab"   "TRUE" 

 # R program to illustrate the use of Assignment operators 
 vec1 <- c(2:5) 
 c(2:5) ->> vec2 
 vec3 <<- c(2:5) 
 vec4 = c(2:5) 
 c(2:5) -> vec5 
 # Performing operations on Operands 
 cat ("vector 1 :", vec1, "\n") 
 cat("vector 2 :", vec2, "\n") 
 cat ("vector 3 :", vec3, "\n") 
 cat("vector 4 :", vec4, "\n") 
 cat("vector 5 :", vec5) 
 Output 
 vector 1 : 2 3 4 5 
 vector 2 : 2 3 4 5 
 vector 3 : 2 3 4 5 
 vector 4 : 2 3 4 5 
 vector 5 : 2 3 4 5 

 Miscellaneous Operators 
 Miscellaneous  Operator  are  the  mixed  operators  in  R  that  simulate  the  printing  of 

 sequences and assignment of vectors, either left or right-handed. 
 1.  %in% Operator 

 Checks  if  an  element  belongs  to  a  list  and  returns  a  boolean  value  TRUE  if  the 
 value is present  else FALSE. 
 val <- 0.1 
 list1 <- c(TRUE, 0.1,"apple") 
 print (val %in% list1) 
 Output :  TRUE 

 Checks for the value 0.1 in the specified list. It exists, therefore, prints TRUE. 
 2.  %*% Operator 

https://www.geeksforgeeks.org/r-operators/#Miscellaneous%20Operator


 This  operator  is  used  to  multiply  a  matrix  with  its  transpose.  Transpose  of  the 
 matrix  is  obtained  by  interchanging  the  rows  to  columns  and  columns  to  rows.  The 
 number  of  columns  of  the  first  matrix  must  be  equal  to  the  number  of  rows  of  the  second 
 matrix. Multiplication of the matrix A with its transpose, B, produces a square matrix. 
 A  r∗c  x B  c∗r  −> P  r∗r 

  mat = matrix(c(1,2,3,4,5,6),nrow=2,ncol=3) 
 print (mat) 
 print( t(mat)) 
 pro = mat %*% t(mat) 
 print(pro) 

 Output : 
 [,1] [,2] [,3]      #original matrix of order 2x3 

 [1,]   1    3    5 
 [2,]   2    4    6 

 [,1] [,2]           #transposed matrix of order 3x2 
 [1,]    1    2 
 [2,]    3    4 
 [3,]    5    6 

 [,1] [,2]          #product matrix of order 2x2 
 [1,]   35   44 
 [2,]   44   56 

 The following R code illustrates the usage of all Miscellaneous Operators in R: 
 # R program to illustrate the use of Miscellaneous operators 
 mat <- matrix (1:4, nrow = 1, ncol = 4) 
 print("Matrix elements using : ") 
 print(mat) 
 product = mat %*% t(mat) 
 print("Product of matrices") 
 print(product,) 
 cat ("does 1 exist in prod matrix :", "1" %in% product) 
 Output 
 [1] "Matrix elements using : " 

 [,1] [,2] [,3] [,4] 
 [1,]    1    2    3    4 
 [1] "Product of matrices" 

 [,1] 
 [1,]   30 



 does 1 exist in prod matrix : FALSE 

 FUNCTIONS IN R PROGRAMMING 
 A  function  accepts  input  arguments  and  produces  the  output  by  executing  valid  R 
 commands  that  are  inside  the  function.  Functions  are  useful  when  you  want  to  perform  a 
 certain  task  multiple  times.  In  R  Programming  Language  when  you  are  creating  a 
 function  the  function  name  and  the  file  in  which  you  are  creating  the  function  need  not  be 
 the same and you can have one or more functions in R. 
 Creating a Function in R Programming 
 Functions  are  created  in  R  by  using  the  command  function().  The  general  structure  of  the 
 function file is as follows: 

 Parameters or Arguments in R Functions: 
 Parameters  and  arguments  are  the  same  term  in  functions.  Parameters  or 

 arguments  are  the  values  passed  into  a  function.  A  function  can  have  any  number  of 
 arguments, they are separated by comma in parentheses. 
 Example: 
 add_num <- function(a,b) 
 { 
 sum_result <- a+b 
 return(sum_result) 

 } 
 # calling add_num function 
 sum = add_num(35,34) 
 #printing result 
 print(sum) 
 Output 
 [1] 69 
 No. of Parameters: 

 Function  should  be  called  with  right  no.  of  parameters,  neither  less  nor  more  or 
 else it will give error. 
 Default Value of Parameter: 

https://www.geeksforgeeks.org/r-tutorial/


 Some  functions  have  default  values,  and  you  can  also  give  default  value  in  your 
 user-defined  functions.  These  values  are  used  by  functions  if  user  doesn’t  pass  any 
 parameter value while calling a function. 
 Return Value: 
 You can use the return() function if you want your function to return the result. 
 Calling a Function in R 

 After  creating  a  Function,  you  have  to  call  the  function  to  use  it.  Calling  a  function 
 in  R  is  very  easy,  you  can  call  a  function  by  writing  it’s  name  and  passing  possible 
 parameters value. 
 Passing Arguments to Functions in R Programming Language 
 There are several ways you can pass the arguments to the function: 
 ●  Case  1:  Generally  in  R,  the  arguments  are  passed  to  the  function  in  the  same  order  as 

 in the function definition. 
 ●  Case  2:  If  you  do  not  want  to  follow  any  order  what  you  can  do  is  you  can  pass  the 

 arguments using the names of the arguments in any order. 
 ●  Case  3:  If  the  arguments  are  not  passed  the  default  values  are  used  to  execute  the 

 function. 
 # A simple R program to demonstrate passing arguments to a function 
 Rectangle = function(length=5, width=4) 
 { 
 area = length * width 
 return(area) 

 } 
 print(Rectangle(2, 3)) 
 print(Rectangle(width = 8, length = 4)) 
 print(Rectangle()) 
 Output 
 [1] 6 
 [1] 32 
 [1] 20 
 Types of Function in R Language 
 ●  Built-in  Function:  Built-in  functions  in  R  are  pre-defined  functions  that  are  available 

 in  R programming languages  to perform common tasks  or operations. 
 ●  User-defined Function:  R language allows us to write  our own function. 
 Built-in Function in R Programming Language 

 Built-in  Function  are  the  functions  that  are  already  existing  in  R  language  and  you 
 just need to call them to use. 

https://www.geeksforgeeks.org/r-programming-language-introduction/


 Here we will use built-in functions like sum(), max() and min(). 
 # Find sum of numbers 4 to 6. 
 print(sum(4:6)) 
 # Find max of numbers 4 and 6. 
 print(max(4:6)) 
 # Find min of numbers 4 and 6. 
 print(min(4:6)) 
 Output 
 [1] 15 
 [1] 6 
 [1] 4 
 Other Built-in Functions in R: 

 Functions  Syntax 

 MATHEMATICAL FUNCTIONS 

 abs()  calculates a number’s absolute value. 

 sqrt()  calculates a number’s square root. 

 round()  rounds a number to the nearest integer. 

 exp()  calculates a number’s exponential value 

 log()  which calculates a number’s natural logarithm. 

 cos()  ,  sin()  , and  tan()  calculates a number’s cosine, sine, and tang 

 STATISTICAL FUNCTIONS 

 mean()  A  vector’s  arithmetic  mean  is  determined  by  the 
 mean() function. 

 median()  A  vector’s  median  value  is  determined  by  the 
 median() function. 

 cor()  calculates the correlation between two vectors. 

 var()  calculates  the  variance  of  a  vector  and  calculates  the 
 standard deviation of a vector. 

https://www.geeksforgeeks.org/calculate-the-absolute-value-in-r-programming-abs-method/
https://www.geeksforgeeks.org/calculate-square-root-of-a-number-in-r-language-sqrt-function/
https://www.geeksforgeeks.org/rounding-off-values-in-r-language-round-function/
https://www.geeksforgeeks.org/calculate-exponential-of-a-number-in-r-programming-exp-function/
https://www.geeksforgeeks.org/performing-logarithmic-computations-in-r-programming-log-log10-log1p-and-log2-functions/
https://www.geeksforgeeks.org/calculate-cosine-of-a-value-in-r-programming-cos-function/
https://www.geeksforgeeks.org/calculate-sine-of-a-value-in-r-programming-sin-function/
https://www.geeksforgeeks.org/calculate-tangent-of-a-value-in-r-programming-tan-function/
https://www.geeksforgeeks.org/calculate-arithmetic-mean-in-r-programming-mean-function/
https://www.geeksforgeeks.org/mean-median-and-mode-in-r-programming/
https://www.geeksforgeeks.org/covariance-and-correlation-in-r-programming/
https://www.geeksforgeeks.org/compute-variance-and-standard-deviation-of-a-value-in-r-programming-var-and-sd-function/


 DATA MANIPULATION FUNCTIONS 

 unique()  returns the unique values in a vector. 

 subset()  subsets a data frame based on conditions. 

 aggregate()  groups data according to a grouping variable. 

 order()  uses ascending or descending order to sort a vector. 

 FILE INPUT / OUTPUT FUNCTIONS 

 read.csv()  reads information from a CSV file. 

 w  rite.csv()  publishes information to write a CSV file. 

 r  ead. table()  reads information from a tabular. 

 w  rite.table()  creates a tabular file with data. 

 User-defined Functions in R Programming Language 
 User-defined  functions  are  the  functions  that  are  created  by  the  user.  User  defines 

 the  working,  parameters,  default  parameter,  etc.  of  that  user-defined  function.  They  can 
 be only used in that specific code. 
 Example 
 evenOdd = function(x) 
 { 
 if(x %% 2 == 0) 
 return("even") 

 else 
 return("odd") 

 } 
 print(evenOdd(4)) 
 print(evenOdd(3)) 
 Output 
 [1] "even" 
 [1] "odd" 
 Multiple Input Multiple Output 

 The  functions  in  R  Language  take  multiple  input  objects  but  returned  only  one 
 object  as  output,  this  is,  however,  not  a  limitation  because  you  can  create  lists  of  all  the 

https://www.geeksforgeeks.org/unique-function-in-r/
https://www.geeksforgeeks.org/subsetting-in-r-programming/
https://www.geeksforgeeks.org/how-to-use-aggregate-function-in-r/
https://www.geeksforgeeks.org/sorting-of-arrays-in-r-programming/
https://www.geeksforgeeks.org/read-contents-of-a-csv-file-in-r-programming-read-csv-function/
https://www.geeksforgeeks.org/writing-to-csv-files-in-r/
https://www.geeksforgeeks.org/reading-files-in-r-programming/
https://www.geeksforgeeks.org/how-to-use-write-table-in-r/


 outputs  which  you  want  to  create  and  once  the  list  is  created  you  can  access  them  into  the 
 elements of the list and get the answers which you want. 

 Let  us  consider  this  example  to  create  a  function  “Rectangle”  which  takes  “length” 
 and  “width”  of  the  rectangle  and  returns  area  and  perimeter  of  that  rectangle.  Since  R 
 Language  can  return  only  one  object.  Hence,  create  one  object  which  is  a  list  that 
 contains “area” and “perimeter” and return the list. 
 Rectangle = function(length, width) 
 { 
 area = length * width 
 perimeter = 2 * (length + width) 
 # create an object called result which is 
 # a list of area and perimeter 
 result = list("Area" = area, "Perimeter" = perimeter) 
 return(result) 

 } 
 resultList = Rectangle(2, 3) 
 print(resultList["Area"]) 
 print(resultList["Perimeter"]) 
 Output 
 $Area 
 [1] 6 
 $Perimeter 
 [1] 10 
 Inline Functions in R 

 Sometimes  creating  an  R  script  file,  loading  it,  executing  it  is  a  lot  of  work  when 
 you  want  to  just  create  a  very  small  function.  So,  what  we  can  do  in  this  kind  of  situation 
 is an inline function. 
 To  create  an  inline  function  you  have  to  use  the  function  command  with  the  argument  x 
 and then the expression of the function. 
 Example 
 f = function(x) x^2*4+x/3 
 print(f(4)) 
 print(f(-2)) 
 print(0) 
 Output 
 [1] 65.33333 
 [1] 15.33333 



 [1] 0 

 ENVIRONMENT AND SCOPE ISSUES 
 The  environment  is  a  virtual  space  that  is  triggered  when  an  interpreter  of  a 

 programming  language  is  launched.  Simply,  the  environment  is  a  collection  of  all  the 
 objects,  variables,  and  functions.  Or,  Environment  can  be  assumed  as  a  top-level  object 
 that  contains  the  set  of  names/variables  associated  with  some  values.  In  this  article,  let  us 
 discuss  creating  a  new  environment  in  R  programming  ,  listing  all  environments, 
 removing  a  variable  from  the  environment,  searching  for  a  variable  or  function  among 
 environments and function environments with the help of examples. 
 Environment Differ from the List? 
 ●  Every object in an environment has a name. 
 ●  The environment has a parent environment. 
 ●  Environments follow reference semantics. 
 Create a New Environment 

 An  environment  in  R  programming  can  be  created  using  new.env()  function. 
 Further,  the  variables  can  be  accessed  using  the  $  or  [[  ]]  operator.  But,  each  variable  is 
 stored  in  different  memory  locations.  There  are  four  special  environments:  globalenv(), 
 baseenv(), emptyenv() and environment() 
 Syntax:  new.env(hash = TRUE) 
 Parameters: 
 hash: indicates logical value. If TRUE, environments uses a hash table 
 To  know  about  more  optional  parameters,  use  below  command  in  console: 
 help(“new.env”) 
 # R program to illustrate Environments in R 
 # Create new environment 
 newEnv <- new.env() 
 # Assigning variables 
 newEnv$x <- 1 
 newEnv$y <- "GFG" 
 newEnv$z <- 1:10 
 # Print 
 print(newEnv$z) 
 Output: 
 [1]  1  2  3  4  5  6  7  8  9 10 
 List all Environments 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/


 Every  environment  has  a  parent  environment  but  there  is  an  empty  environment 
 that  does  not  have  any  parent  environment.  All  the  environments  can  be  listed  using  ls() 
 function  and  search()  function.  ls()  function  also  list  out  all  the  bindings  of  the  variables 
 in a particular environment. 
 Syntax: 
 ls() 
 search() 
 Parameters: 
 These functions need no argument 
 # R program to illustrate Environments in R 

 # Prints all the bindings and environments 
 # attached to Global Environment 
 ls() 
 # Prints bindings of newEnv 
 ls(newEnv) 
 # Lists all the environments of the parent environment 
 search() 
 Output: 
 [1] "al"     "e"      "e1"     "f"      "newEnv" "pts"    "x"      "y" 
 [9] "z" 
 [1] "x" "y" "z" 
 [1] ".GlobalEnv"        "package:stats"     "package:graphics" 
 [4] "package:grDevices" "package:utils"     "package:datasets" 
 [7] "package:methods"   "Autoloads"         "package:base" 
 Removing a Variable From an Environment 

 A  variable  in  an  environment  is  deleted  using  rm()  function.  It  is  different  from 
 deleting  entries  from  lists  as  entries  in  lists  are  set  as  NULL  to  be  deleted.  But,  using  rm() 
 function, bindings are removed from the environment. 
 Syntax:  rm(…) 
 Parameters: 
 …: indicates list of objects 
 Example: 
 # R program to illustrate Environments in R 
 # Remove newEnv 
 rm(newEnv) 
 # List 

https://www.geeksforgeeks.org/list-all-the-objects-present-in-the-current-working-directory-in-r-programming-ls-function/
https://www.geeksforgeeks.org/get-a-list-of-all-the-attached-packages-in-r-programming-search-function/
https://www.geeksforgeeks.org/remove-objects-from-memory-in-r-programming-rm-function/


 ls() 
 Output: 
 [1] "al"  "e"   "e1"  "f"   "pts" "x"   "y"   "z" 
 Search a Variable or Function Among Environments 

 A  variable  or  a  function  can  be  searched  in  R  programming  by  using  where() 
 function  among  all  the  environments  and  packages  present.  where()  function  is  present  in 
 pryr  package.  This  function  takes  only  two  arguments,  the  name  of  the  object  to  search 
 for and the environment from where to start the search. 
 Syntax:  where(name) 
 Parameters: 
 name: indicates object to look for 
 Example: 
 # R program to illustrate Environments in R 
 # Install pryr package 
 install.packages("pryr") 
 # Load the package 
 library(pryr) 
 # Search 
 where("x") 
 where("mode") 
 Output: 
 <environment: R_GlobalEnv> 
 <environment: base> 
 Scope of Variable in R 
 Variables: 
 In  R,  variables  are  the  containers  for  storing  data  values.  They  are  reference,  or  pointers, 
 to  an  object  in  memory  which  means  that  whenever  a  variable  is  assigned  to  an  instance, 
 it  gets  mapped  to  that  instance.  A  variable  in  R  can  store  a  vector,  a  group  of  vectors  or  a 
 combination of many R objects. 
 Example: 
 # R program to demonstrate variable assignment 
 # Assignment using equal operator 
 var1 = c(0, 1, 2, 3) 
 print(var1) 
 # Assignment using leftward operator 
 var2 <- c("Python", "R") 
 print(var2) 



 # A Vector Assignment 
 a = c(1, 2, 3, 4) 
 print(a) 
 b = c("Debi", "Sandeep", "Subham", "Shiba") 
 print(b) 
 # A group of vectors Assignment using list 
 c = list(a, b) 
 print(c) 
 Output: 
 [1] 0 1 2 3 
 [1] "Python" "R" 
 [1] 1 2 3 4 
 [1] "Debi"    "Sandeep" "Subham"  "Shiba" 
 [[1]] 
 [1] 1 2 3 4 
 [[2]] 
 [1] "Debi"    "Sandeep" "Subham"  "Shiba" 
 Scope of a variable 
 The  location  where  we  can  find  a  variable  and  also  access  it  if  required  is  called  the  scope 
 of a variable. There are mainly two types of variable scopes: 
 ●  Global  Variables:  Global  variables  are  those  variables  that  exist  throughout  the 

 execution of a program. It can be changed and accessed from any part of the program. 
 ●  Local  Variables:  Local  variables  are  those  variables  that  exist  only  within  a  certain 

 part of a program like a function and are released when the function call ends. 

 Global Variable 
 As  the  name  suggests,  Global  Variables  can  be  accessed  from  any  part  of  the 

 program.  They  are  available  throughout  the  lifetime  of  a  program.  They  are  declared 
 anywhere  in  the  program  outside  all  of  the  functions  or  blocks.  Declaring  global 



 variables:  Global  variables  are  usually  declared  outside  of  all  of  the  functions  and  blocks. 
 They can be accessed from any portion of the program. 
 # R program to illustrate usage of global variables 
 # global variable 
 global = 5 
 # global variable accessed from within a function 
 display = function() 
 { 
 print(global) 

 } 
 display() 

 # changing value of global variable 
 global = 10 
 display() 
 Output: 
 [1] 5 
 [1] 10 
 Local Variable 

 Variables defined within a function or block are said to be local to those functions. 
 Local  variables  do  not  exist  outside  the  block  in  which  they  are  declared,  i.e.  they  can  not 
 be accessed or used outside that block. Local variables are declared inside a block. 
 Example: 
 # R program to illustrate usage of local variables 
 func = function() 
 { 

 #  this  variable  is  local  to  the  function  func()  and  cannot  be  accessed  outside  this 
 function 
 age = 18 

 } 
 print(age) 
 Output: 
 Error in print(age) : object 'age' not found 
 Accessing Global Variables 

 Global  Variables  can  be  accessed  from  anywhere  in  the  code  unlike  local  variables 
 that have a scope restricted to the block of code in which they are created. 
 Example: 



 f = function() { 
 # a is a local variable here 
 a <-1 
 } 
 f() 
 # Can't access outside the function 
 print(a) # This'll give error 
 Output: 
 Error in print(a) : object 'a' not found 


