
CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4.3 Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

The computation comprises of three processes Pi, Pj , and Pk, connected through a communication

network. The processes communicate solely by exchanging messages over fault- free, FIFO

communication channels.

Processes Pi, Pj , and Pk have taken checkpoints

• The rollback of process 𝑃𝑖 to checkpoint 𝐶𝑖,1 created an orphan message H

• Orphan message I is created due to the roll back of process 𝑃𝑗 to checkpoint 𝐶𝑗,1

• Messages C, D, E, and F are potentially problematic

– Message C: a delayed message

– Message D: a lost message since the send event for D is recorded in the

restored state for 𝑃𝑗, but the receive event has been undone at process 𝑃𝑖.

– Lost messages can be handled by having processes keep a message log of all

the sent messages

– Messages E, F: delayed orphan messages. After resuming execution from their

checkpoints, processes will generate both of these messages

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4.4 Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated checkpointing

2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing

• Each process has autonomy in deciding when to take checkpoints

• Advantages

The lower runtime overhead during normal execution

• Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a

garbage collection algorithm

4. Not suitable for application with frequent output commits

• The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

• The following direct dependency tracking technique is commonly used in uncoordinated

checkpointing.

Direct dependency tracking technique

• Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

• 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

• When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,

which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

• When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by each

process.

• When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.

• The initiator then calculates the recovery line based on the global dependency information

and broadcasts a rollback request message containing the recovery line.

• Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.

2. Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Example (a) : Checkpoint inconsistency

• Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

• Assume m reaches 𝑃1 before the checkpoint request

• This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the receipt

of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

• If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a checkpoint

before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

• A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Algorithm

• The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and sends

them a request.

• Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until

no more processes can be identified.

• During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

• In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while allowing

processes to take some of their checkpoints independently. Processes may be forced to take

additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

• Communication-induced check pointing piggybacks protocol- related information on

each application message

• The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

• The forced checkpoint must be taken before the application may process the contents of

the message

• In contrast with coordinated check pointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Model-based checkpointing

• Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

• No control messages are exchanged among the processes during normal operation. All

information necessary to execute the protocol is piggybacked on application messages

• There are several domino-effect-free checkpoint and communication model.

• The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede all

message-sending events.

Index-based checkpointing.

• Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

4.5 Log-based rollback recovery

A log-based rollback recovery makes use of deterministic and nondeterministic events in a

computation.

Deterministic and non-deterministic events

• Log-based rollback recovery exploits the fact that a process execution can be modeled

as a sequence of deterministic state intervals, each starting with the execution of a non-

deterministic event.

• A non-deterministic event can be the receipt of a message from another process or an

event internal to the process.

• Note that a message send event is not a non-deterministic event.

• For example, in Figure, the execution of process P0 is a sequence of four deterministic

intervals. The first one starts with the creation of the process, while the remaining three

start with the receipt of messages m0, m3, and m7, respectively.

• Send event of message m2 is uniquely determined by the initial state of P0 and by the

receipt of message m0, and is therefore not a non-deterministic event.

• Log-based rollback recovery assumes that all non-deterministic events can be identified

and their corresponding determinants can be logged into the stable storage.

• Determinant: the information need to “replay” the occurrence of a non-deterministic

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

event (e.g., message reception).

• During failure-free operation, each process logs the determinants of all non-

deterministic events that it observes onto the stable storage. Additionally, each process

also takes checkpoints to reduce the extent of rollback during recovery.

The no-orphans consistency condition

Let e be a non-deterministic event that occurs at process p. We define the following:

• Depend(e): the set of processes that are affected by a non-deterministic event e.

• Log(e): the set of processes that have logged a copy of e’s determinant in their volatile

memory.

• Stable(e): a predicate that is true if e’s determinant is logged on the stable storage.

Suppose a set of processes crashes. A process p in becomes an orphan when p itself does

not fail and p’s state depends on the execution of a nondeterministic event e whose determinant

cannot be recovered from the stable storage or from the volatile memory of a surviving process.

storage or from the volatile memory of a surviving process. Formally, it can be stated as follows

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Types

1. Pessimistic Logging

• Pessimistic logging protocols assume that a failure can occur after any non-deterministic

event in the computation. However, in reality failures are rare

• Pessimistic protocols implement the following property, often referred to as synchronous logging,

which is a stronger than the always-no-orphans condition

• Synchronous logging

– ∀e: ￢Stable(e) ⇒ |Depend(e)| = 0

• Thai is,if an event has not been logged on the stable storage, then no process can depend

on it.

Example:

• Suppose processes 𝑃1 and 𝑃2 fail as shown, restart from checkpoints B and C, and roll

forward using their determinant logs to deliver again the same sequence of messages as in

the pre-failure execution

• Once the recovery is complete, both processes will be consistent with the state of 𝑃0

that includes the receipt of message 𝑚7 from 𝑃1

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

• Disadvantage: performance penalty for synchronous logging

• Advantages:

• immediate output commit

• restart from most recent checkpoint

• recovery limited to failed process(es)

• simple garbage collection

• Some pessimistic logging systems reduce the overhead of synchronous logging without

relying on hardware. For example, the sender-based message logging (SBML) protocol

keeps the determinants corresponding to the delivery of each message m in the volatile

memory of its sender.

• The sender-based message logging (SBML) protocol

Two steps.

1. First, before sending m, the sender logs its content in volatile memory.

2. Then, when the receiver of m responds with an acknowledgment that includes the order

in which the message was delivered, the sender adds to the determinant the ordering

information.

2. Optimistic Logging

• Processes log determinants asynchronously to the stable storage

• Optimistically assume that logging will be complete before a failure occurs

• Do not implement the always-no-orphans condition

• To perform rollbacks correctly, optimistic logging protocols track causal dependencies

during failure free execution

• Optimistic logging protocols require a non-trivial garbage collection scheme

• Pessimistic protocols need only keep the most recent checkpoint of each process, whereas

optimistic protocols may need to keep multiple checkpoints for each process

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

• Consider the example shown in Figure Suppose process P2 fails before the determinant for

m5 is logged to the stable storage. Process P1 then becomes an orphan process and must

roll back to undo the effects of receiving the orphan message m6. The rollback of P1

further forces P0 to roll back to undo the effects of receiving message m7.

• Advantage: better performance in failure-free execution

• Disadvantages:

• coordination required on output commit

• more complex garbage collection

• Since determinants are logged asynchronously, output commit in optimistic logging

protocols requires a guarantee that no failure scenario can revoke the output. For example,

if process P0 needs to commit output at state X, it must log messages m4 and m7 to the

stable storage and ask P2 to log m2 and m5. In this case, if any process fails, the

computation can be reconstructed up to state X.

3. Causal Logging

• Combines the advantages of both pessimistic and optimistic logging at the expense of a more

complex recovery protocol

• Like optimistic logging, it does not require synchronous access to the stable storage except

during output commit

• Like pessimistic logging, it allows each process to commit output independently and never

creates orphans, thus isolating processes from the effects of failures at other processes

• Make sure that the always-no-orphans property holds

• Each process maintains information about all the events that have causally affected its state

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

• Consider the example in Figure Messages m5 and m6 are likely to be lost on the failures

of P1 and P2 at the indicated instants. Process

• P0 at state X will have logged the determinants of the nondeterministic events that

causally precede its state according to Lamport’s happened-before relation.

• These events consist of the delivery of messages m0, m1, m2, m3, and m4.

• The determinant of each of these non-deterministic events is either logged on the stable

storage or is available in the volatile log of process P0.

• The determinant of each of these events contains the order in which its original receiver

delivered the corresponding message.

• The message sender, as in sender-based message logging, logs the message content. Thus,

process P0 will be able to “guide” the recovery of P1 and P2 since it knows the order in

which P1 should replay messages m1 and m3 to reach the state from which P1 sent message

m4.

• Similarly, P0 has the order in which P2 should replay message m2 to be consistent with

both P0 and P1.

• The content of these messages is obtained from the sender log of P0 or regenerated

deterministically during the recovery of P1 and P2.

• Note that information about messages m5 and m6 is lost due to failures. These messages

may be resent after recovery possibly in a different order.

• However, since they did not causally affect the surviving process or the outside world, the

CS3551 DISTRIBUTED COMPUTING

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

resulting state is consistent.

• Each process maintains information about all the events that have causally affected its state.

