3.4. MOMENT AREA METHOD

Fig. shows a beam $A B$ carrying some type of loading, and hence subjected to bending moment as shown in Fig.3.18. Let the beam bent into $\mathrm{AP}_{1} \mathrm{Q}_{1} \mathrm{~B}$ and due to the load acting on the beam A be a point of zero slope and zero deflection.

Consider an element PQ of small length dx at a distance of x from B . The corresponding points on the deflected bear are $P_{1} Q_{1}$. Let, $R=$ Radius of curvature of deflected beam $d \theta=$ Angle included between the tangent P_{1} and $\mathrm{Q}_{1} \quad \mathrm{M}=$ Bending moment between P and $\mathrm{Q} d x=$ Length of PQ
$\theta=$ The angle in radians, included between the tangents drawn at the extremities of the beam i.e., at A and B facing the reference line. From geometry of the bend up beam

Section $\mathrm{P}_{1} \mathrm{Q}_{1}$, We have

$$
\mathrm{P}_{1} \mathrm{Q}_{1}=\mathrm{R} \cdot \mathrm{~d} \theta
$$

$=\mathrm{dx} \mathrm{dx}=\mathrm{R} . \mathrm{d} \theta$
$\mathrm{d} \theta=\frac{d x}{R}$

From bending moment equation.

Or $\quad \mathrm{R}=\frac{E I}{M}$
Substituting R value in $d \theta$ equation,
$\mathrm{d} \theta={ }_{E I}^{M} \mathrm{Xdx}$
Since A is point of zero slope at B is obtained by integrating the above
equation between the limits 0 and L .

$$
\theta=\int_{0}^{L} \frac{M}{E I} \mathrm{dx}
$$

$$
=\frac{1}{E I} \int_{0}^{L} M \cdot d x
$$

We Know that M.dx represents the B.M diagram of length dx.
Hence $\int_{0}^{L} M . d x$ is the area of B.M. diagram between A and B. .: slope $\theta={ }^{1} \mathrm{X}$ Area of B.M diagram between A and B

In case, slope at A is not zero, then "Total change of slope between B and A equals the area of B.M diagram between B and A divided by the flexural rigidity EI". Deflection due to the bending of the portion $\mathrm{PQ} . \mathrm{dy}=\mathrm{x} . \mathrm{d} \theta$

Substituting the value of $\mathrm{d} \theta$ in equation (i) we get,
$\mathrm{dy}=\mathrm{x} . \frac{M}{E I}-\mathrm{Xdx}$
Since the deflection at A is assumed to be zero, the total deflection at B is obtained by integrating the above equation between the limits 0 and L .

$$
\begin{aligned}
\mathrm{y} & =\int_{0}^{L} x \frac{M}{E I} \mathrm{dx} \\
& =\frac{1}{E I} \int_{0}^{L} x \cdot M \cdot d x
\end{aligned}
$$

But x.M.dx represents the moment of area of the BM diagram of length dx about B. This is equal to the total area of BM diagram multiplied by the distance of the C.G. of the BM diagram area from B.

$$
\begin{aligned}
\mathrm{y} & =\frac{1}{E I} \mathrm{X} \overline{\mathrm{X}} \mathrm{X} \text { Area of B.M diagram } \\
& =\frac{A \bar{x}}{E I}
\end{aligned}
$$

Where,

$$
\begin{aligned}
& A=\text { Area of BM diagram } \\
& X=\text { Distance of } C . G \text { of the area from } B
\end{aligned}
$$

In case the point A is not a point of zero slope and deflection
" The deflection of B with respect to the tangent at A equal to B, the first moment area about B of the area of the B.M diagram between B and A".

3.4.1. MOHR'S THEOREM 1:

The change of slope between any two points is equal to the net area of the
B.M diagram between these points divided by EI

Area of Bending Moment Diagram
Slope
$(\theta)=\quad$ EI

3.4.2. MOHR'S THEOREM 2:

The total deflection between any two points is equal to the net moment of area of BM diagram between these points divided by EI.

Deflection $(\mathrm{y})=\frac{\text { Area of Bending Moment DiagramX} \overline{\mathrm{x}}}{\mathrm{EI}}$

3.4.3.MAXIMUM SLOPE AND DEFLECTION FOR THE CANTILEVER BEAM WITH A POINT LOAD AT FREE END.

A cantilever beam $A B$ of length L fixed at end A free at end B carrying a point load W at the free end as shown in Fig.

BM at the free end, $\mathrm{B}=0$
$B M$ at the fixed end, $\quad A=-W \cdot L=-W L$
Let,

$$
\mathrm{y}_{\mathrm{B}}=\text { deflection at end } \mathrm{B} \text { with respect to } \mathrm{A}
$$

$\theta_{\mathrm{B}}=$ Slope at B
According to Mohr's Theorem I,
Slope, $\theta_{\mathrm{B}}=\frac{\text { Area of } B M \text { diagram between } A \text { and } B}{E I}$
Area of BM diagram $=\frac{1}{2} \cdot$ L.WL $=\frac{W L^{2}}{2}$
$\therefore \quad$ Slope at free end $\boldsymbol{\theta}_{\mathrm{B}}=\frac{W L^{2}}{2 \boldsymbol{E I}}$
According to Mohr's Theorem II, Deflection

$$
=\frac{A \bar{x}}{E I}
$$

ув
2
\bar{x} from B

$$
\begin{array}{r}
=\mathrm{L} \\
3
\end{array}
$$

Deflection

$$
\text { ув }=\frac{\frac{W L^{2}}{2} X \frac{2 L}{3}}{E I}
$$

Deflection at free end

$$
\mathbf{y}_{\mathrm{B}}=\frac{W L^{3}}{3 E I}
$$

3.4.4.MAXIMUM SLOPE AND DEFLECTION FOR THE CANTILEVER BEAM CARRYING A UNIFORMLY DISTRIBUTED LOAD.

A cantilever beam $A B$ of length L fixed at end A free at end B carrying a uniformly distributed load of w/unit length over the entire length as shown in Fig.

BM at the free end, $\quad \mathrm{B}=0$
BM at the fixed end, $\mathrm{A}=-$ W.L. $\frac{L}{2}=-\frac{W L^{2}}{2}$
Let, $\quad y_{B}=$ deflection at end B with respect to A
$\theta_{\mathrm{B}}=$ Slope at B
According to Mohr's Theorem I,
Slope, $\theta \mathrm{B}=\frac{\text { Area of } B M \text { diagram between } A \text { and } B}{E I}$
Area of BM diagram $=\frac{1}{3} \times L \times \frac{W L^{2}}{2}=\frac{W L^{3}}{6}$
\therefore Slope at free end $\quad \theta_{\mathrm{B}}=\frac{W L^{3}}{6 E I}$
According to Mohr's Theorem II, Deflection
ув $=\frac{A \bar{x}}{E I}$
\bar{x} from B

$$
=\frac{3}{4} \mathrm{~L}
$$

Deflection

$$
\text { Ув }^{=}=\frac{\frac{W L^{3}}{6} X \frac{3 L}{4}}{E I}
$$

$\mathbf{y}_{\mathrm{B}}=\frac{W L^{4}}{8 E I}$
4.4.5.Maximum slope and Deflection for the Cantilever beam carrying a uniformly

distributed load upto a length ' a ' from the fixed end.

A cantilever beam $A B$ of length L fixed at end A free at end B carrying a uniformly distributed load of w/unit length up to a length of 'a' from the fixed end as shown in Fig.

BM at the free end,

$$
\mathrm{B}=0 \mathrm{BM} \text { at } \mathrm{C}
$$

$=0$
BM at the fixed end, $\mathrm{A}=-$ W.a. $\frac{a}{2}=-\frac{W a^{2}}{2}$
Let, $y_{B}=$ deflection at end B with respect to $A \theta_{B}=$ Slope
at B
According to Mohr's Theorem I,
Slope, $\theta \mathrm{B}=\frac{\text { Area of } B M \text { diagram between } A \text { and } B}{E I}$
Area of BM diagram $=\frac{1}{3} \times \mathrm{a} \times \frac{W a^{2}}{2}=\frac{W a^{3}}{6}$
\therefore Slope at free end $\boldsymbol{\theta}_{\mathrm{B}}=\frac{\boldsymbol{w} \boldsymbol{a}^{\nu}}{\boldsymbol{6 E I}}$
According to Mohr's Theorem II, Deflection
ув $=\frac{A \bar{x}}{E I}$
\bar{x} from B

Deflection

$$
\begin{aligned}
= & (L-a)+\frac{3}{4 \mathrm{a}} \\
\mathrm{y}_{\mathrm{B}} & =\frac{\frac{W a^{3}}{6} \times\left[(L-a)+\frac{3 a}{4}\right]}{E I}
\end{aligned}
$$

Deflection at free end,
$\mathbf{y b}_{\mathrm{B}}=\frac{W a^{3}}{6 E I}\left[(\boldsymbol{L}-\boldsymbol{a})+\frac{3 a}{4}\right]$

4.4.6.MAXIMUM SLOPE AND DEFLECTION FORTHE SIMPLY SUPPORTED BEAM WITH A CENTRAL POINT LOAD.

A Simply supported beam $A B$ of length L carrying a point load W at the centre of the beam (i.e., at a point C) as shown in Fig.

Since the beam is symmetrically loaded,

$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\text { Total load }}{2}=\frac{W}{2}$
BM at the ends A and $\mathrm{B}=0 \quad$ (since A and B are simply supported ends)
BM at Centre, $\quad \mathrm{C}=\mathrm{RA} \cdot \frac{L}{2}=\frac{W}{2} \cdot \frac{L}{2}=\frac{W L}{4}$
Let, $\quad y_{c}=$ deflection at the centre. $C \theta_{A}=\theta_{B}=$
Slope at Supports.A and B.
According to Mohr's Theorem I,
Slope, $\theta_{\mathrm{A}}=\theta_{\mathrm{B}}=\frac{\text { Area of } B M \text { diagram between } A \text { and } C}{E I}$
Area of BM diagram $=\frac{1}{2} \cdot \frac{L}{2} \cdot \frac{W L}{4}=\frac{W L^{2}}{16}$
$\therefore \quad$ Slope at Supports $\boldsymbol{\theta}_{\mathrm{A}}=\boldsymbol{\theta}_{\mathrm{B}}=\frac{W L^{2}}{16 E I}$
According to Mohr's Theorem II,
Deflection at centreyc $=\frac{A \bar{x}}{E I}$
\bar{x} from A

$$
=\frac{2}{3} \frac{L}{2}=\frac{2 L}{6}
$$

Deflection $y_{c}=\frac{\frac{W L^{2}}{16} \times \frac{2 L}{6}}{E I}$
Deflection at centre $\mathbf{y}_{\mathbf{c}}=\frac{W L^{3}}{48 E I}$

4.4.7.MAXIMUM SLOPE AND DEFLECTION FOR THESIMPLY SUPPORTED BEAM WITH UNIFORMLY DISTRIBUTED LOAD.

A Simply supported beam $A B$ of length L carrying a udl of w/unit length as shown in Fig.

Since the beam is symmetrically loaded,

$$
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\text { Total load }}{2}=\frac{w L}{2}
$$

BM at the ends A and $\mathrm{B}=0 \quad$ (since A and B are simply supported ends)
BM at Centre, $\quad \mathrm{C}=\mathrm{RA} \cdot \frac{L}{2}-\frac{w L}{2} \cdot \frac{L}{4}=\frac{w L}{2} \cdot \frac{L}{2}-\frac{w L^{2}}{8}=\frac{W L^{2}}{8}$
Let, $\quad y_{c}=$ deflection at the centre. $C \quad \theta_{A}$
$=\theta_{\mathrm{B}}=$ Slope at Supports. A and B. According to Mohr's Theorem I,

Slope, $\theta_{\mathrm{A}}=\theta_{\mathrm{B}}=\frac{\text { Area of } B M \text { diagram between } A \text { and } C}{E I}$
Area of BM diagram $=\frac{2}{3} \cdot \frac{L}{2} \cdot \frac{W L^{2}}{8}=\frac{W L^{3}}{24}$
$\therefore \quad$ Slope at Supports $\boldsymbol{\theta}_{\mathrm{A}}=\boldsymbol{\theta}_{\mathrm{B}}=\frac{W L^{3}}{24 E I}$
According to Mohr's Theorem II,
Deflection at centrey ${ }_{C}=\frac{A \bar{x}}{E I}$
\bar{x} from A $\quad=\frac{5}{8} \frac{L}{2}=\frac{5 L}{16}$

Deflection

$$
\mathrm{y}_{\mathrm{c}}=\frac{\frac{W L^{3}}{24} \times \frac{5 L}{16}}{E I}
$$

Deflection at centre $y_{c}=\frac{5 W L^{4}}{384 E I}$

Example.3.4.1. A cantilever beam of 4 m long carries a point load of 9 KN at the free end and an UDL of $8 \mathrm{kN} / \mathrm{m}$ over a length of 2 m from the fixed end. Determine the maximum slope and deflection by area moment method. Take $\mathrm{E}=2.2 \times 10^{5} \mathrm{Mpa}$ and $\mathrm{I}=22.5 \times 10^{6} \mathrm{~mm}^{4}$.

Given Data:

Span,

$$
\mathrm{L}=4 \mathrm{~m}
$$

Point load at free end $\mathrm{W}=9 \mathrm{KN}$
Udl,
$\mathrm{w}=8 \mathrm{kN} / \mathrm{m}$ over a length of 2 m from the fixed end
Young's Modulus, $\quad \mathrm{E}=2.2 \mathrm{X} \mathrm{10} 0^{5} \mathrm{Mpa}$

$$
=2.2 \quad \mathrm{X} \quad 10^{5} \quad \mathrm{X} \quad 10^{6} \mathrm{pa}
$$

$=2.2 \times 10^{5} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
$=2.2 \times 10^{5} \times \frac{10^{6}}{10^{6}}=2.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Moment of Inertia

$$
\mathrm{I}=22.5 \times 10^{6} \mathrm{~mm}^{4}
$$

To Find

The maximum slope and deflection

36 kNm

BMD due to polen load

Solution Bending moments

Due to point load,

$$
\mathrm{M}_{\mathrm{B}}=0 \quad \mathrm{M}_{\mathrm{A}}=-9 \mathrm{X} 4=-36 \mathrm{kNm}
$$

Due to UDL

$$
\mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{C}}=0 \quad \mathrm{M}_{\mathrm{A}}=-8 \times 2 \mathrm{X}^{\frac{4}{2}} \quad=-16 \mathrm{kNm}
$$

Area of BMD

Area of BMD due to point load,

$$
\mathrm{A}^{1}=\frac{1}{2} \times 4 \times 36
$$

$$
=72 \mathrm{kNm}^{2}=72 \times 10^{9} \mathrm{Nmm}^{2} \text {. Area of BMD }
$$

due to UDL,

$$
\begin{aligned}
\mathrm{A} 2 & =\frac{1}{3} \times 2 \times 16 \\
& =10.67 \mathrm{kNm}^{2}=10.67 \times 10^{9} \mathrm{Nmm}^{2}
\end{aligned}
$$

Centrodial distances from free end

$$
\begin{gathered}
\overline{x_{1}}=\frac{2}{3} \times 4=2.67 \mathrm{~m}=2.67 \times 10^{3} \mathrm{~mm} \\
\overline{x_{2}}=2+\frac{3}{4} \times 2=3.5 \mathrm{~m}=3.5 \times 10^{3} \mathrm{~mm}
\end{gathered}
$$

Maximum slope
Applying Mohr's Theorem I
Maximum slope at free end,
$\theta_{\mathrm{B}}=\frac{\text { Area of } B M D}{E I}=\frac{A_{1+} A_{2}}{E I}$

$$
=\frac{(72+10.67) \times 10^{9}}{\left(2.2 \times 10^{5} \times 22.5 \times 10^{6}\right)}
$$

$=0.0167$ radians Maximum Deflection

Applying Mohr's Theorem II
Maximum Deflection at free end,

$$
\begin{aligned}
& =\frac{A_{1} \bar{x}_{1}+A_{2} \bar{x}_{2}}{E I} \\
& =\frac{\left(72 \times 10^{9} \times 2.67 \times 10^{3}\right)+\left(10.67 \times 10^{9} \times 3.5 \times 10^{3}\right)}{\left(2.2 \times 10^{5} \times 22.5 \times 10^{6}\right)} \\
& =46.38 \mathrm{~mm} .
\end{aligned}
$$

Example.3.4.2. A Cantilever of 4 m span carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ run spread over its entire length. In addition to UDL it carries a concentrated load of 30 kN at the free end.

Calculate the slope and deflection at the free end by moment area method. Take $\mathrm{E}=2 \mathrm{X}$ $10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=8 \mathrm{X} 10^{7} \mathrm{~mm}^{4}$.

Given Data:

Span,

$$
\mathrm{L}=4 \mathrm{~m}
$$

Udl,
$\mathrm{w}=20 \mathrm{kN} / \mathrm{m}$ Point load at
free end $\mathrm{W}=30 \mathrm{KN}$
Young's Modulus, $\quad \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

Moment of Inertia $\quad \mathrm{I}=8 \times 10^{7} \mathrm{~mm}^{4}$.

To Find

The maximum slope and deflection

120 KNm
BMD due to poini load

100 KNm

Solution

Bending moments

Due to point load,

$$
\mathrm{M}_{\mathrm{B}}=0 \quad \mathrm{M}_{\mathrm{A}}=-30 \times 4=-120 \mathrm{kNm}
$$

Due to UDL

$$
\mathrm{M}_{\mathrm{B}}=0 \quad \mathrm{MA}=-20 \times 4 \mathrm{X}^{\frac{4}{2}}=-160 \mathrm{kNm}
$$

Area of BMD

Area of BMD due to point load,

$$
\begin{aligned}
\mathrm{A}^{1} & =\frac{1}{2} \times 4 \times 120 \\
& =240 \mathrm{kNm}^{2}=240 \times 10^{9} \mathrm{Nmm}^{2} . \text { Area of BMD }
\end{aligned}
$$

due to UDL,

$$
\begin{aligned}
\mathrm{A}^{2} & =\frac{1}{3} \times 4 \times 160 \\
& =213.33 \mathrm{kNm}^{2}=213.33 \times 10^{9} \mathrm{Nmm}^{2}
\end{aligned}
$$

Centrodial distances from free end

$$
\begin{gathered}
\overline{x_{1}}=\frac{2}{3} \times 4=2.67 \mathrm{~m}=2.67 \times 10^{3} \mathrm{~mm} \\
\overline{x_{2}}=\frac{3}{4} \times 4=3 \mathrm{~m} \quad=3 \times 10^{3} \mathrm{~mm}
\end{gathered}
$$

Maximum slope
Applying Mohr's Theorem I
Maximum slope at free end,

$$
\begin{aligned}
\theta_{\mathrm{B}}=\frac{\text { Area of } B M D}{E I} & =\frac{A_{1+}+A_{2}}{E I} \\
& =\frac{(240+213.33) \times 10^{9}}{\left(2 \times 10^{5} \times 8 \times 10^{7}\right)}=\mathbf{0 . 0 2 8 3} \text { radians Maximum Deflection }
\end{aligned}
$$

Applying Mohr's Theorem II Maximum
Deflection at free end,

$$
\begin{aligned}
\mathrm{y}_{\mathrm{B}}=\frac{(A r e a ~ o f ~ B M D) X \bar{x}}{E I} & \\
& =\frac{A_{1} \bar{x}_{1}+A_{2} \bar{x}_{2}}{E I} \\
& =\frac{\left(240 \times 10^{9} \times 2.67 \times 10^{3}\right)+\left(213.33 \times 10^{9} \times 3 \times 10^{3}\right)}{\left(2 \times 10^{5} \times 8 \times 10^{7}\right)}=\mathbf{8 0 m m} .
\end{aligned}
$$

Example.3.4.3. A simply supported beam of hollow circular section of external diameter 200 mm and internal diameter 150 mm has a span of 6 m . It is subjected to a central concentrated load of 50 kN and a UDL of $5 \mathrm{kN} / \mathrm{m}$ over the entire span. Determine the maximum slope at supports and maximum deflection at centre. Take $\mathrm{E}=2 \mathrm{X}$
$10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Given Data:

External diameter, D $=200 \mathrm{~mm}$
Internal diameter, $d=150 \mathrm{~mm}$
Span, $\quad L=6 \mathrm{~m}$
Central point load $\quad \mathrm{W}=50 \mathrm{kN}$
Udl $\quad \mathrm{w}=5 \mathrm{KN} / \mathrm{m}$
Young's Modulus, $\quad \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

To Find

B.M.D due to UDL

The maximum slope and deflection

Solution Bending moments

Moment of inertia for a hollow circular section,

$$
\begin{aligned}
\mathrm{I} & =\frac{\pi}{64} \mathrm{X}\left(D^{4}-d^{4}\right) \\
& =\frac{\pi}{64} \times\left(200^{4}-150^{4}\right) \\
& =53.69 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Bending Moments

Due to point load, B.M at supports,
$\mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}=0$ (since A and B are simply supported)
B. M at centre, $\mathrm{M}_{\mathrm{C}}=\frac{W L}{4}$

$$
=\frac{50 \times 6}{4}=75 \mathrm{kNm}=75 \times 10^{6} \mathrm{Nmm}
$$

Due to UDL,B.M at supports,
$\mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}=0$ (since A and B are simply supported)
B. M at centre, $\mathrm{M}_{\mathrm{C}}=\frac{w L^{2}}{8}$
$=\frac{50 \times 6^{2}}{4}=22.5 \mathrm{kNm}=22.5 \mathrm{X} 10^{6} \mathrm{Nmm}$

Area of BMD

Area of BMD due to point load,

$$
\begin{aligned}
\mathrm{A}^{1} & =\frac{1}{2} \times 3 \times 75 \\
& =112.5 \mathrm{kNm}^{2}=112.5 \times 10^{9} \mathrm{Nmm}^{2} . \text { Area of BMD }
\end{aligned}
$$

due to UDL,

$$
\begin{aligned}
\mathrm{A}^{2} & =\frac{2}{3} \times 3 \times 22.5 \\
& =45 \mathrm{kNm}^{2}=45 \times 10^{9} \mathrm{Nmm}^{2}
\end{aligned}
$$

Centrodial distances from free end

$$
\begin{aligned}
& \overline{x_{1}}=\frac{2}{3} \times 3=2 \mathrm{~m} \quad=2 \times 10^{3} \mathrm{~mm} \\
& \overline{x_{2}}=\frac{5}{8} \times 3=1.875 \mathrm{~m}=1.875 \times 10^{3} \mathrm{~mm}
\end{aligned}
$$

Maximum slope
Applying Mohr's Theorem I Maximum slope at
Supports,

$$
\begin{aligned}
& \theta_{\mathrm{A}}=\theta_{\mathrm{B}}=\frac{\text { Area of } B M D}{E I}=\frac{A_{1+}+A_{2}}{E I} \\
&=\frac{(112.5+45) \times 10^{9}}{\left(2 \times 10^{5} \times 53.69 \times 10^{6}\right)}=\mathbf{0 . 0 1 4 7} \text { radians Maximum Deflection }
\end{aligned}
$$

Applying Mohr's Theorem II
Maximum Deflection at Centre,

$$
\begin{aligned}
& =\frac{A_{1} \bar{x}_{1}+A_{2} \bar{x}_{2}}{E I} \\
& =\frac{\left(112.5 \times 10^{9} \times 2 \times 10^{3}\right)+\left(45 \times 10^{9} \times 1.875 \times 10^{3}\right)}{\left(2 \times 10^{5} \times 53.69 \times 10^{6}\right)}=\mathbf{2 8 . 8 1 m m}
\end{aligned}
$$

