ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT IV FRAMEWORKS

MapReduce — Hadoop, Hive, MapR — Sharding — NoSQL Databases - S3 - Hadoop
Distributed File Systems — Case Study- Preventing Private Information Inference Attacks
on Social Networks-Grand Challenge: Applying Regulatory Science and Big Data to
Improve Medical Device Innovation

APACHE HIVE OVERVIEW

Apache Hive is a data warehouse infrastructure built on top of Hadoop that provides a
SQL-like interface for querying and managing large datasets stored in Hadoop's HDFS
(Hadoop Distributed File System). It was originally developed by Facebook and later
contributed to the Apache Software Foundation. Hive allows users to query, analyze, and
summarize large datasets without having to write complex MapReduce code.

Hive abstracts the complexity of writing low-level MapReduce programs by providing a
query language called HiveQL (HQL), which is similar to SQL. This makes it easier for
analysts and data engineers who are familiar with SQL to work with big data.

Key Features of Hive

1. SQL-like Query Language (HiveQL):

o Hive provides a query language called HiveQL or HQL, which is similar
to SQL. Users can perform complex data operations like filtering,
aggregation, and joins without having to deal with the complexity of
writing raw MapReduce code.

2. Data Abstraction:

o Hive abstracts the underlying complexity of Hadoop MapReduce by
translating HiveQL queries into MapReduce jobs or using Tez or Spark
execution engines. This allows users to focus on higher-level data
manipulations.

3. Support for Large Datasets:

o Hive is optimized for working with large, batch-oriented datasets. It scales
horizontally to handle massive datasets spread across many machines in a
Hadoop cluster.

4. Schema-on-Read:

o Hive uses a schema-on-read approach, meaning that the data itself is
stored without enforcing a schema, and the schema is applied when the data
1s read. This 1s different from traditional databases, which use
schema-on-write.

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5. Extensibility:

o Users can extend Hive’s functionality using user-defined functions (UDFs),
user-defined aggregates (UDAFs), and user-defined table functions
(UDTFs).

6. Integration with Hadoop Ecosystem:

o Hive integrates well with other parts of the Hadoop ecosystem, such as
HBase, Pig, and MapReduce. It can be used with Hadoop’s HDFS for
storing data, and YARN for resource management.

7. Partitioning and Bucketing:

o Partitioning: Hive supports partitioning of tables based on column values,
which helps to divide data into manageable chunks. For example, you could
partition data by date, so queries for a specific time period are faster.

o Bucketing: Bucketing splits data into more manageable files, which
improves query performance, especially with larger datasets.

8. Hive Metastore:

o The Hive Metastore is a central repository that stores metadata about Hive
tables and partitions. It includes information such as table names, column
names, data types, and location of stored data in HDFS.

9. Support for Different File Formats:

o Hive supports several file formats including Text, Parquet, ORC
(Optimized Row Columnar), Avro, and SequenceFile. The ORC format,
for example, is optimized for both storage and query performance.

Components of Hive

1. HiveQL (Hive Query Language):

o A SQL-like language for querying data in Hive. It supports a variety of
SQL features such as joins, group by, and order by but is optimized for
large-scale data analysis.

2. Driver:

o The Hive driver is responsible for receiving HiveQL statements from the
user, compiling the query, and submitting it to the execution engine
(MapReduce, Tez, or Spark).

3. Compiler:

o The compiler converts HiveQL queries into a logical plan. It generates an
execution plan, translating the high-level query into a sequence of
MapReduce or other backend jobs.

4. Execution Engine:

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o The execution engine handles the execution of the tasks generated by the
compiler. It can execute the plan using MapReduce, Apache Tez, or
Apache Spark.

5. Metastore:

o The Hive Metastore stores the metadata information of tables, partitions,
and other objects. The metadata includes details about the schema, column
types, and the file paths where data resides in HDFS. The Metastore can be
accessed using a JDBC/ODBC client for querying or manipulating the data.

6. Hive Clients:
o Hive provides several ways to interact with the system, including:
m Hive CLI: A command-line interface for running Hive queries.
m JDBC/ODBC Drivers: Allows external applications (like BI tools)
to interact with Hive.
m Web Interface: Hive also offers a web Ul for basic interaction.

Hive Architecture Overview

1. User Interface:

o Users interact with Hive using HiveQL through the Hive command-line
interface (CLI), Web UI, or through external applications that connect using
JDBC or ODBC.

2. Hive Metastore:

o The Metastore holds the metadata of all Hive tables and partitions,
including column names, data types, and file locations in HDFS. The
Metastore is a relational database (often MySQL or Derby) that holds this
metadata.

3. Compiler:
o It converts HiveQL queries into a series of MapReduce or Tez jobs.
4. Execution Engine:

o It executes the jobs created by the compiler. This engine could use
MapReduce, Tez, or Spark to run queries in parallel across the Hadoop
cluster.

5. Hadoop Cluster:

o The cluster where HDFS stores the actual data, and the execution engine

runs MapReduce, Tez, or Spark tasks to process data.

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Apache Hive is widely used in big data environments, especially when dealing with
large-scale data processing, analysis, and querying within the Hadoop ecosystem. Here
are the primary use cases and applications of Hive:

1. Data Warehousing

e Description: Hive is commonly used as a data warehouse solution for large-scale
data storage, querying, and analysis in the Hadoop ecosystem. It allows businesses
to store, process, and retrieve structured data from Hadoop's HDFS (Hadoop
Distributed File System) using a familiar SQL-like query language (HiveQL).

e Use Case:

o ETL (Extract, Transform, Load): Hive can be used for batch processing
to clean, transform, and load data into the data warchouse.

o Storing large volumes of historical data (e.g., sales records, sensor data,
logs).

o Reporting and Business Intelligence (BI): Data analysts and BI tools can
use Hive to query the data and generate reports, dashboards, and insights.

2. Batch Data Processing

e Description: Hive is optimized for batch processing tasks. It processes large
datasets in parallel and is suitable for use cases that require running periodic
queries on massive data stored in HDFS. While it can support high-volume data
processing, it’s not designed for real-time or low-latency workloads.

e Use Case:

o Data Aggregation: Aggregating large datasets (e.g., sales transactions, web
analytics) to compute metrics like totals, averages, etc.

o ETL Pipelines: Running scheduled jobs for extracting data, transforming
it, and loading it into another system or table.

o Historical Data Analysis: Analyzing past trends over large datasets, like
customer behavior, financial performance, or sensor readings.

3. Log Analysis

e Description: Hive is often used to process and analyze log data stored in HDFS.
Logs can come from various sources, such as web servers, application logs, and
system logs. Since Hive can handle large volumes of structured and
semi-structured data, it’s well-suited for analyzing logs at scale.

e Use Case:

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o Web Log Analysis: Querying and analyzing web server logs to gain
insights into user behavior, traffic patterns, and performance bottlenecks.

o Application Log Aggregation: Analyzing logs from multiple applications
to detect anomalies, errors, or trends across a large set of systems.

4. Data Transformation and Aggregation

Description: Hive excels at transforming and aggregating large datasets. It
supports complex group by, joins, filters, and window functions, which are
useful for transforming raw data into structured formats and generating summaries
or metrics.

Use Case:

o Data Enrichment: Transforming raw data (e.g., logs, transactional data)
into a more useful or structured format for analysis, reporting, or machine
learning.

o Calculating Metrics: Summarizing datasets to calculate key business
metrics, such as revenue totals, customer engagement scores, etc.

5. Data Integration

Description: Hive can be used to integrate data from multiple sources into a single
analysis pipeline. It supports loading data from various sources, including
traditional RDBMS systems (via Sqoop), streaming data sources (via Flume or
Kafka), and other Hadoop ecosystem tools.
Use Case:
o Connecting to RDBMS: Using Sqoop to import data from relational
databases (like MySQL, Oracle, etc.) into Hive for batch processing.
o Stream Data Ingestion: Using Flume or Kafka to bring real-time data into
Hive, enabling a hybrid approach that blends batch and streaming data
processing.

6. Data Analytics and Business Intelligence (BI)

Description: Hive is used to support analytics and business intelligence (BI)
applications. It can run complex queries over large datasets and serve as a backend
for BI tools, such as Tableau, Qlik, or Microsoft Power BI. Since HiveQL is
similar to SQL, it’s easy for analysts to use and integrate with these BI tools.

Use Case:

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o Ad Hoc Analysis: Business analysts can run complex queries on large
datasets to gain insights into customer behavior, product performance, and
sales trends.

o Integration with BI Tools: Hive can be integrated with tools like Tableau
or QlikView to allow users to visualize and interpret data stored in Hadoop.

7. Data Mining

e Description: Hive can be used to prepare data for data mining or machine
learning tasks. Although Hive is not directly designed for real-time or iterative
machine learning (like Apache Spark or other ML frameworks), it can serve as a
preprocessing engine for large datasets that are later analyzed by machine learning
algorithms.

e Use Case:

o Feature Engineering: Transforming and aggregating data into features
suitable for training machine learning models.

o Data Preparation: Cleaning, filtering, and formatting data for use in
machine learning algorithms running on other platforms like Spark or
Mahout.

8. Data Governance and Compliance

e Description: Hive can be used to manage and track large datasets, helping
organizations ensure compliance with data governance policies. It provides
features like partitioning and metadata management (via the Hive Metastore) to
make data management easier.

e Use Case:

o Data Auditing: Keeping track of data lineage, access control, and
transformations to ensure that data can be audited for regulatory
compliance.

o Metadata Management: Storing metadata information (such as schema
definitions) in the Hive Metastore for better governance and easy
discovery of datasets.

9. Handling Semi-Structured Data

e Description: Hive is well-suited to work with semi-structured data, such as
JSON, Avro, or Parquet files. It provides native support for reading and querying
these formats without requiring extensive data transformation.

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o Use Case:

o Processing JSON/Parquet/Avro Data: Loading and querying
semi-structured data from external sources (e.g., APIs, log files) and storing
it in Hadoop for analysis.

o Handling Sensor Data: Analyzing sensor or machine-generated data that is
often semi-structured and large.

10. Data Partitioning and Bucketing

e Description: Hive supports partitioning and bucketing of data to improve query
performance. This is particularly useful when working with large datasets where
only a subset of the data is queried frequently.

e Use Case:

o Partitioning: Partition data by date, region, or other meaningful columns to
speed up query performance (e.g., querying last month's sales).

o Bucketing: Splitting data into smaller, more manageable files to optimize
the performance of certain operations, like joins.

11. Real-Time Analytics (Limited)

e Description: Although Hive is primarily used for batch processing, it can support
certain forms of near-real-time analytics when combined with HBase or Apache
Kafka for streaming data.

e Use Case:

o Real-time Dashboards: Combining data from HBase and Kafka for
real-time or near-real-time updates in a Hive data warehouse.

o Real-time Monitoring: Analyzing logs or events in near-real-time to detect
issues or provide operational insights.

12. Data Archiving

e Description: Hive is used to archive large amounts of historical data, enabling
businesses to maintain and query older datasets that are no longer frequently
accessed.

e Use Case:

o Archiving Transactional Data: Storing large volumes of transactional data
in a scalable and cost-effective manner.

o Cost-Effective Storage: Using Hive with HDFS as a cheap storage
solution for infrequently accessed but important historical data.

DS4015 - BIG DATA ANALYTICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Advantages of Hive

e Ease of Use: HiveQL is easy to learn for those familiar with SQL, allowing users
to perform complex data manipulations without needing to write MapReduce
code.

e Scalability: Hive is built on top of Hadoop, so it inherits the scalability and fault
tolerance features of Hadoop, allowing it to process petabytes of data.

e Integration with Hadoop Ecosystem: Hive integrates with tools like HBase (for
real-time access), Pig (for data transformation), and Sqoop (for data import/export
from RDBMS systems).

Disadvantages of Hive

e Latency: Hive is optimized for batch processing, so it may not be suitable for
low-latency or real-time applications.

e Limited for Transactional Data: Hive is not designed for handling transactional
workloads or frequent updates and deletes in a way that traditional relational
databases do.

e Complexity in Joins: Hive can struggle with very complex joins or queries that
require frequent scanning of large datasets. However, newer versions have
improved performance.

DS4015 - BIG DATA ANALYTICS

