
‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭UNIT IV FRAMEWORKS‬
‭MapReduce‬ ‭–‬ ‭Hadoop,‬ ‭Hive,‬ ‭MapR‬ ‭–‬ ‭Sharding‬ ‭–‬ ‭NoSQL‬ ‭Databases‬ ‭-‬ ‭S3‬ ‭-‬ ‭Hadoop‬
‭Distributed‬‭File‬‭Systems‬‭–‬‭Case‬‭Study-‬‭Preventing‬‭Private‬‭Information‬‭Inference‬‭Attacks‬
‭on‬ ‭Social‬ ‭Networks-Grand‬ ‭Challenge:‬ ‭Applying‬ ‭Regulatory‬ ‭Science‬ ‭and‬ ‭Big‬ ‭Data‬ ‭to‬
‭Improve Medical Device Innovation‬

‭APACHE HIVE OVERVIEW‬
‭Apache‬ ‭Hive‬ ‭is‬ ‭a‬ ‭data‬ ‭warehouse‬‭infrastructure‬‭built‬‭on‬‭top‬‭of‬‭Hadoop‬‭that‬‭provides‬‭a‬
‭SQL-like‬ ‭interface‬ ‭for‬ ‭querying‬ ‭and‬ ‭managing‬ ‭large‬ ‭datasets‬ ‭stored‬ ‭in‬ ‭Hadoop's‬ ‭HDFS‬
‭(Hadoop‬ ‭Distributed‬ ‭File‬ ‭System).‬ ‭It‬ ‭was‬ ‭originally‬ ‭developed‬ ‭by‬ ‭Facebook‬ ‭and‬ ‭later‬
‭contributed‬‭to‬‭the‬‭Apache‬‭Software‬‭Foundation.‬‭Hive‬‭allows‬‭users‬‭to‬‭query,‬‭analyze,‬‭and‬
‭summarize large datasets without having to write complex MapReduce code.‬

‭Hive‬‭abstracts‬‭the‬‭complexity‬‭of‬‭writing‬‭low-level‬‭MapReduce‬‭programs‬‭by‬‭providing‬‭a‬
‭query‬‭language‬‭called‬‭HiveQL‬‭(HQL)‬‭,‬‭which‬‭is‬‭similar‬‭to‬‭SQL.‬‭This‬‭makes‬‭it‬‭easier‬‭for‬
‭analysts and data engineers who are familiar with SQL to work with big data.‬

‭Key Features of Hive‬

‭1.‬ ‭SQL-like Query Language (HiveQL)‬‭:‬
‭○‬ ‭Hive provides a query language called‬‭HiveQL‬‭or‬‭HQL‬‭,‬‭which is similar‬

‭to SQL. Users can perform complex data operations like filtering,‬
‭aggregation, and joins without having to deal with the complexity of‬
‭writing raw MapReduce code.‬

‭2.‬ ‭Data Abstraction‬‭:‬
‭○‬ ‭Hive abstracts the underlying complexity of Hadoop MapReduce by‬

‭translating HiveQL queries into MapReduce jobs or using‬‭Tez‬‭or‬‭Spark‬
‭execution engines. This allows users to focus on higher-level data‬
‭manipulations.‬

‭3.‬ ‭Support for Large Datasets‬‭:‬
‭○‬ ‭Hive is optimized for working with large, batch-oriented datasets. It scales‬

‭horizontally to handle massive datasets spread across many machines in a‬
‭Hadoop cluster.‬

‭4.‬ ‭Schema-on-Read‬‭:‬
‭○‬ ‭Hive uses a‬‭schema-on-read‬‭approach, meaning that‬‭the data itself is‬

‭stored without enforcing a schema, and the schema is applied when the data‬
‭is read. This is different from traditional databases, which use‬
‭schema-on-write.‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭5.‬ ‭Extensibility‬‭:‬
‭○‬ ‭Users can extend Hive’s functionality using user-defined functions (UDFs),‬

‭user-defined aggregates (UDAFs), and user-defined table functions‬
‭(UDTFs).‬

‭6.‬ ‭Integration with Hadoop Ecosystem‬‭:‬
‭○‬ ‭Hive integrates well with other parts of the Hadoop ecosystem, such as‬

‭HBase‬‭,‬‭Pig‬‭, and‬‭MapReduce‬‭. It can be used with‬‭Hadoop’s‬‭HDFS‬‭for‬
‭storing data, and‬‭YARN‬‭for resource management.‬

‭7.‬ ‭Partitioning and Bucketing‬‭:‬
‭○‬ ‭Partitioning‬‭: Hive supports partitioning of tables‬‭based on column values,‬

‭which helps to divide data into manageable chunks. For example, you could‬
‭partition data by date, so queries for a specific time period are faster.‬

‭○‬ ‭Bucketing‬‭: Bucketing splits data into more manageable‬‭files, which‬
‭improves query performance, especially with larger datasets.‬

‭8.‬ ‭Hive Metastore‬‭:‬
‭○‬ ‭The‬‭Hive Metastore‬‭is a central repository that stores‬‭metadata about Hive‬

‭tables and partitions. It includes information such as table names, column‬
‭names, data types, and location of stored data in HDFS.‬

‭9.‬ ‭Support for Different File Formats‬‭:‬
‭○‬ ‭Hive supports several file formats including‬‭Text‬‭,‬‭Parquet‬‭,‬‭ORC‬

‭(Optimized Row Columnar)‬‭,‬‭Avro‬‭, and‬‭SequenceFile‬‭.‬‭The ORC format,‬
‭for example, is optimized for both storage and query performance.‬

‭Components of Hive‬

‭1.‬ ‭HiveQL (Hive Query Language)‬‭:‬
‭○‬ ‭A SQL-like language for querying data in Hive. It supports a variety of‬

‭SQL features such as‬‭joins‬‭,‬‭group by‬‭, and‬‭order by‬‭but is optimized for‬
‭large-scale data analysis.‬

‭2.‬ ‭Driver‬‭:‬
‭○‬ ‭The Hive driver is responsible for receiving HiveQL statements from the‬

‭user, compiling the query, and submitting it to the execution engine‬
‭(MapReduce, Tez, or Spark).‬

‭3.‬ ‭Compiler‬‭:‬
‭○‬ ‭The compiler converts HiveQL queries into a logical plan. It generates an‬

‭execution plan, translating the high-level query into a sequence of‬
‭MapReduce or other backend jobs.‬

‭4.‬ ‭Execution Engine‬‭:‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭○‬ ‭The execution engine handles the execution of the tasks generated by the‬
‭compiler. It can execute the plan using‬‭MapReduce‬‭,‬‭Apache Tez‬‭, or‬
‭Apache Spark‬‭.‬

‭5.‬ ‭Metastore‬‭:‬
‭○‬ ‭The Hive Metastore stores the metadata information of tables, partitions,‬

‭and other objects. The metadata includes details about the schema, column‬
‭types, and the file paths where data resides in HDFS. The Metastore can be‬
‭accessed using a JDBC/ODBC client for querying or manipulating the data.‬

‭6.‬ ‭Hive Clients‬‭:‬
‭○‬ ‭Hive provides several ways to interact with the system, including:‬

‭■‬ ‭Hive CLI‬‭: A command-line interface for running Hive‬‭queries.‬
‭■‬ ‭JDBC/ODBC Drivers‬‭: Allows external applications (like‬‭BI tools)‬

‭to interact with Hive.‬
‭■‬ ‭Web Interface‬‭: Hive also offers a web UI for basic‬‭interaction.‬

‭Hive Architecture Overview‬

‭1.‬ ‭User Interface‬‭:‬
‭○‬ ‭Users interact with Hive using HiveQL through the Hive command-line‬

‭interface (CLI), Web UI, or through external applications that connect using‬
‭JDBC or ODBC.‬

‭2.‬ ‭Hive Metastore‬‭:‬
‭○‬ ‭The Metastore holds the metadata of all Hive tables and partitions,‬

‭including column names, data types, and file locations in HDFS. The‬
‭Metastore is a relational database (often MySQL or Derby) that holds this‬
‭metadata.‬

‭3.‬ ‭Compiler‬‭:‬
‭○‬ ‭It converts HiveQL queries into a series of MapReduce or Tez jobs.‬

‭4.‬ ‭Execution Engine‬‭:‬
‭○‬ ‭It executes the jobs created by the compiler. This engine could use‬

‭MapReduce, Tez, or Spark to run queries in parallel across the Hadoop‬
‭cluster.‬

‭5.‬ ‭Hadoop Cluster‬‭:‬
‭○‬ ‭The cluster where HDFS stores the actual data, and the execution engine‬

‭runs MapReduce, Tez, or Spark tasks to process data.‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭Apache Hive is widely used in big data environments, especially when dealing with‬
‭large-scale data processing, analysis, and querying within the Hadoop ecosystem. Here‬
‭are the primary use cases and applications of Hive:‬

‭1. Data Warehousing‬

‭●‬ ‭Description‬‭: Hive is commonly used as a‬‭data warehouse‬‭solution for large-scale‬
‭data storage, querying, and analysis in the Hadoop ecosystem. It allows businesses‬
‭to store, process, and retrieve structured data from Hadoop's HDFS (Hadoop‬
‭Distributed File System) using a familiar‬‭SQL-like‬‭query language‬‭(HiveQL).‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭ETL (Extract, Transform, Load)‬‭: Hive can be used for‬‭batch processing‬

‭to clean, transform, and load data into the data warehouse.‬
‭○‬ ‭Storing large volumes of historical data (e.g., sales records, sensor data,‬

‭logs).‬
‭○‬ ‭Reporting and Business Intelligence (BI)‬‭: Data analysts‬‭and BI tools can‬

‭use Hive to query the data and generate reports, dashboards, and insights.‬

‭2. Batch Data Processing‬

‭●‬ ‭Description‬‭: Hive is optimized for‬‭batch processing‬‭tasks. It processes large‬
‭datasets in parallel and is suitable for use cases that require running periodic‬
‭queries on massive data stored in HDFS. While it can support high-volume data‬
‭processing, it’s not designed for real-time or low-latency workloads.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Data Aggregation‬‭: Aggregating large datasets (e.g.,‬‭sales transactions, web‬

‭analytics) to compute metrics like totals, averages, etc.‬
‭○‬ ‭ETL Pipelines‬‭: Running scheduled jobs for extracting‬‭data, transforming‬

‭it, and loading it into another system or table.‬
‭○‬ ‭Historical Data Analysis‬‭: Analyzing past trends over‬‭large datasets, like‬

‭customer behavior, financial performance, or sensor readings.‬

‭3. Log Analysis‬

‭●‬ ‭Description‬‭: Hive is often used to process and analyze‬‭log data stored in HDFS.‬
‭Logs can come from various sources, such as web servers, application logs, and‬
‭system logs. Since Hive can handle large volumes of structured and‬
‭semi-structured data, it’s well-suited for analyzing logs at scale.‬

‭●‬ ‭Use Case‬‭:‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭○‬ ‭Web Log Analysis‬‭: Querying and analyzing web server logs to gain‬
‭insights into user behavior, traffic patterns, and performance bottlenecks.‬

‭○‬ ‭Application Log Aggregation‬‭: Analyzing logs from multiple‬‭applications‬
‭to detect anomalies, errors, or trends across a large set of systems.‬

‭4. Data Transformation and Aggregation‬

‭●‬ ‭Description‬‭: Hive excels at transforming and aggregating‬‭large datasets. It‬
‭supports complex‬‭group by‬‭,‬‭joins‬‭,‬‭filters‬‭, and‬‭window‬‭functions‬‭, which are‬
‭useful for transforming raw data into structured formats and generating summaries‬
‭or metrics.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Data Enrichment‬‭: Transforming raw data (e.g., logs,‬‭transactional data)‬

‭into a more useful or structured format for analysis, reporting, or machine‬
‭learning.‬

‭○‬ ‭Calculating Metrics‬‭: Summarizing datasets to calculate‬‭key business‬
‭metrics, such as revenue totals, customer engagement scores, etc.‬

‭5. Data Integration‬

‭●‬ ‭Description‬‭: Hive can be used to integrate data from‬‭multiple sources into a single‬
‭analysis pipeline. It supports loading data from various sources, including‬
‭traditional‬‭RDBMS systems‬‭(via‬‭Sqoop‬‭),‬‭streaming data‬‭sources‬‭(via‬‭Flume‬‭or‬
‭Kafka‬‭), and other Hadoop ecosystem tools.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Connecting to RDBMS‬‭: Using‬‭Sqoop‬‭to import data from‬‭relational‬

‭databases (like MySQL, Oracle, etc.) into Hive for batch processing.‬
‭○‬ ‭Stream Data Ingestion‬‭: Using‬‭Flume‬‭or‬‭Kafka‬‭to bring‬‭real-time data into‬

‭Hive, enabling a hybrid approach that blends batch and streaming data‬
‭processing.‬

‭6. Data Analytics and Business Intelligence (BI)‬

‭●‬ ‭Description‬‭: Hive is used to support‬‭analytics‬‭and‬‭business intelligence‬‭(BI)‬
‭applications. It can run complex queries over large datasets and serve as a backend‬
‭for BI tools, such as Tableau, Qlik, or Microsoft Power BI. Since HiveQL is‬
‭similar to SQL, it’s easy for analysts to use and integrate with these BI tools.‬

‭●‬ ‭Use Case‬‭:‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭○‬ ‭Ad Hoc Analysis‬‭: Business analysts can run complex queries on large‬
‭datasets to gain insights into customer behavior, product performance, and‬
‭sales trends.‬

‭○‬ ‭Integration with BI Tools‬‭: Hive can be integrated‬‭with tools like‬‭Tableau‬
‭or‬‭QlikView‬‭to allow users to visualize and interpret‬‭data stored in Hadoop.‬

‭7. Data Mining‬

‭●‬ ‭Description‬‭: Hive can be used to prepare data for‬‭data mining‬‭or machine‬
‭learning tasks. Although Hive is not directly designed for real-time or iterative‬
‭machine learning (like Apache Spark or other ML frameworks), it can serve as a‬
‭preprocessing engine for large datasets that are later analyzed by machine learning‬
‭algorithms.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Feature Engineering‬‭: Transforming and aggregating‬‭data into features‬

‭suitable for training machine learning models.‬
‭○‬ ‭Data Preparation‬‭: Cleaning, filtering, and formatting‬‭data for use in‬

‭machine learning algorithms running on other platforms like‬‭Spark‬‭or‬
‭Mahout‬‭.‬

‭8. Data Governance and Compliance‬

‭●‬ ‭Description‬‭: Hive can be used to manage and track‬‭large datasets, helping‬
‭organizations ensure compliance with data governance policies. It provides‬
‭features like partitioning and metadata management (via the‬‭Hive Metastore‬‭) to‬
‭make data management easier.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Data Auditing‬‭: Keeping track of data lineage, access‬‭control, and‬

‭transformations to ensure that data can be audited for regulatory‬
‭compliance.‬

‭○‬ ‭Metadata Management‬‭: Storing metadata information‬‭(such as schema‬
‭definitions) in the‬‭Hive Metastore‬‭for better governance‬‭and easy‬
‭discovery of datasets.‬

‭9. Handling Semi-Structured Data‬

‭●‬ ‭Description‬‭: Hive is well-suited to work with‬‭semi-structured‬‭data, such as‬
‭JSON, Avro, or Parquet files. It provides native support for reading and querying‬
‭these formats without requiring extensive data transformation.‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Processing JSON/Parquet/Avro Data‬‭: Loading and querying‬

‭semi-structured data from external sources (e.g., APIs, log files) and storing‬
‭it in Hadoop for analysis.‬

‭○‬ ‭Handling Sensor Data‬‭: Analyzing sensor or machine-generated‬‭data that is‬
‭often semi-structured and large.‬

‭10. Data Partitioning and Bucketing‬

‭●‬ ‭Description‬‭: Hive supports‬‭partitioning‬‭and‬‭bucketing‬‭of data to improve query‬
‭performance. This is particularly useful when working with large datasets where‬
‭only a subset of the data is queried frequently.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Partitioning‬‭: Partition data by date, region, or other‬‭meaningful columns to‬

‭speed up query performance (e.g., querying last month's sales).‬
‭○‬ ‭Bucketing‬‭: Splitting data into smaller, more manageable‬‭files to optimize‬

‭the performance of certain operations, like joins.‬

‭11. Real-Time Analytics (Limited)‬

‭●‬ ‭Description‬‭: Although Hive is primarily used for batch‬‭processing, it can support‬
‭certain forms of near-real-time analytics when combined with‬‭HBase‬‭or‬‭Apache‬
‭Kafka‬‭for streaming data.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Real-time Dashboards‬‭: Combining data from HBase and‬‭Kafka for‬

‭real-time or near-real-time updates in a Hive data warehouse.‬
‭○‬ ‭Real-time Monitoring‬‭: Analyzing logs or events in‬‭near-real-time to detect‬

‭issues or provide operational insights.‬

‭12. Data Archiving‬

‭●‬ ‭Description‬‭: Hive is used to archive large amounts‬‭of historical data, enabling‬
‭businesses to maintain and query older datasets that are no longer frequently‬
‭accessed.‬

‭●‬ ‭Use Case‬‭:‬
‭○‬ ‭Archiving Transactional Data‬‭: Storing large volumes of transactional data‬

‭in a scalable and cost-effective manner.‬
‭○‬ ‭Cost-Effective Storage‬‭: Using Hive with HDFS as a‬‭cheap storage‬

‭solution for infrequently accessed but important historical data.‬

‭DS4015 - BIG DATA ANALYTICS‬



‭ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY‬

‭Advantages of Hive‬

‭●‬ ‭Ease of Use‬‭: HiveQL is easy to learn for those familiar‬‭with SQL, allowing users‬
‭to perform complex data manipulations without needing to write MapReduce‬
‭code.‬

‭●‬ ‭Scalability‬‭: Hive is built on top of Hadoop, so it‬‭inherits the scalability and fault‬
‭tolerance features of Hadoop, allowing it to process petabytes of data.‬

‭●‬ ‭Integration with Hadoop Ecosystem‬‭: Hive integrates‬‭with tools like‬‭HBase‬‭(for‬
‭real-time access),‬‭Pig‬‭(for data transformation),‬‭and‬‭Sqoop‬‭(for data import/export‬
‭from RDBMS systems).‬

‭Disadvantages of Hive‬

‭●‬ ‭Latency‬‭: Hive is optimized for batch processing, so‬‭it may not be suitable for‬
‭low-latency or real-time applications.‬

‭●‬ ‭Limited for Transactional Data‬‭: Hive is not designed‬‭for handling transactional‬
‭workloads or frequent updates and deletes in a way that traditional relational‬
‭databases do.‬

‭●‬ ‭Complexity in Joins‬‭: Hive can struggle with very complex‬‭joins or queries that‬
‭require frequent scanning of large datasets. However, newer versions have‬
‭improved performance.‬

‭DS4015 - BIG DATA ANALYTICS‬


