
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

TYPES OF INHERITACE:

1. Single Inheritance
2. Multilevel Inheritance
3. Multiple Inheritance

4. Hierarchical Inheritance
5. Hybrid Inheritance

Note: The following inheritance types are not directly supported in Java.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

1. SINGLE INHERITANCE

The process of creating only one subclass from only one super class is known as Single
Inheritance.
 Only two classes are involved in this inheritance.
 The subclass can access all the members of super class.

Example: Animal  Dog

1. class Animal
2. {
3. void eat()

4. {
5. System.out.println("eating...");
6. }
7. }

8. class Dog extends Animal
9. {
10. void bark()

11. {
12. System.out.println("barking...");
13. }
14.}

15.class TestInheritance

16.{

17. public static void main(String args[])

18. {

19. Dog d=new Dog();
20. d.bark();
21. d.eat();

22. }
23.}

Output:

$java TestInheritance

barking...

eating...

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

2. MULTILEVEL INHERITANCE:

 The process of creating a new sub class from an already inherited sub class is
known as Multilevel Inheritance.

 Multiple classes are involved in inheritance, but one class extends only one.
 The lowermost subclass can make use of all its super classes' members.
 Multilevel inheritance is an indirect way of implementing multiple inheritance.

 Example: Animal  Dog  BabyDog

1. class Animal

2. {

3. void eat()

4. {
5. System.out.println("eating...");
6. }
7. }

8. class Dog extends Animal
9. {
10. void bark()

11. {
12. System.out.println("barking...");
13. }
14. }

15. class BabyDog extends Dog

16. {

17. void weep()

18. {
19. System.out.println("weeping...");
20. }
21. }

22. class TestInheritance2

23. {

24. public static void main(String args[]) {
25. BabyDog d=new BabyDog();
26. d.weep();
27. d.bark();
28. d.eat();

29. }

30. }

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Output:

$java TestInheritance2

eating..

3. HIERARCHICAL INHERITANCE

 The process of creating more than one sub classes from one super class is called

Hierarchical Inheritance.

 Example:
1. class Animal

2. {
3. void eat()
4. {
5. System.out.println("eating...");
6. }
7. }
8. class Dog extends Animal
9. {
10. void bark()
11. {
12. System.out.println("barking...");
13. }
14. }
15. class Cat extends Animal
16. {
17. void meow()
18. {
19. System.out.println("meowing...");
20. }

weeping...

barking...

Animal

Dog Cat

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Welcome

21. }
22. class TestInheritance3
23. {
24. public static void main(String args[])
25. {

26. Cat c=new Cat();
27. c.meow();
28. c.eat();
29. //c.bark();//C.T.Error

30. }
31. }

Output:

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritances is not
supported in java.
Consider a scenario where A, B and C are three classes. The C class inherits A and B
classes. If A and B classes have same method and you call it from child class object, there
will be ambiguity to call method of A or B class.
Since compile time errors are better than runtime errors, java renders compile time
error if you inherit 2 classes. So whether you have same method or different, there will
be compile time error now.

class A {

void msg()

{

System.out.println("Hello");

 Multiple Inheritance using Interface

interface Printable {

void print();

} }
}

class B { interface Showable {

void msg() void show();

{ }
System.out.println("Welcome"); class A implements Printable, Showable {

} public void print() {

} System.out.println("Hello");

class C extends A,B // this is multiple inheritance which is ERROR }
{ public void show() {

Public Static void main(String args[]) System.out.println("Welcome");

{ }

C obj=new C(); public static void main(String args[]) {

obj.msg();//Now which msg() method would be i A obj = new A();
nvoked? obj.print();

} obj.show();

} }
 }

Output

Compile Time Error
 Output:

Hello

meowing...
eating...

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

The private members of a class cannot be directly accessed outside the class. Only
methods of that class can access the private members directly. However, sometimes it
may be necessary for a subclass to access a private member of a superclass. If you make
a private member public, then anyone can access that member. So, if a member of a
superclass needs to be (directly) accessed in a subclass then you must declare that
member protected.

Following table describes the difference

Modifier Class Package subclass World

public Yes Yes Yes Yes

private Yes No No No

protected Yes Yes Yes No

Following program illustrates how the methods of a subclass can directly access a
protected member of the superclass.

Consider two kinds of shapes: rectangles and triangles. These two shapes have certain
common properties height and a width (or base).

This could be represented in the world of classes with a class Shapes from which we
would derive the two other ones : Rectangle and Triangle
Program : (Shape.java)

public class Shape

{

protected double height; // To hold height.
protected double width; //To hold width or base

2.4.1: PROTECTED MEMBER

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

public void setValues(double height, double width)

{

this.height = height;
this.width = width;

}

}

Program : (Rectangle.java)

public class Rectangle extends Shape

{

public double getArea()

{

return height * width; //accessing protected members

}

}

Program : (Triangle.java)

public class Triangle extends Shape

{

public double getArea()

{

return height * width / 2; //accessing protected members

}

}

Program : (TestProgram.java)

public class TestProgram

{

public static void main(String[] args)

{

//Create object of Rectangle.

Rectangle rectangle = new Rectangle();

//Create object of Triangle.
Triangle triangle = new Triangle();

//Set values in rectangle object

rectangle.setValues(5,4);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

//Set values in trianlge object
triangle.setValues(5,10);

// Display the area of rectangle.

System.out.println("Area of rectangle : " +
rectangle.getArea());

// Display the area of triangle.

System.out.println("Area of triangle : " +
triangle.getArea());

}

}

Output :

Area of rectangle : 20.0
Area of triangle : 25.0

2.4.2: CONSTRUCTORS IN SUB – CLASSES

In Java, constructor of base class with no argument gets automatically called in derived
class constructor.

When Constructors are Called?

Constructors are called in order of derivation, from superclass to subclass.
Because a superclass has no knowledge of any subclass, any initialization it needs to
perform is separate from and possibly prerequisite to any initialization performed by
the subclass. Therefore, it must be executed first.

Example:

class A
{

A()
{ System.out.println(“ Inside A’s Constructor”); }

}

class B extends A

{
B()

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

{ System.out.println(“ Inside B’s Constructor”); }
}

class C extends B

{
C()
{ System.out.println(“ Inside C’s Constructor”); }

}
class CallingCons
{

public static void main(String args[])
{

C objC=new C();
}

}

Output:

Inside A’s
Constructor
Inside B’s
Constructor
Inside C’s
Constructor

Program Explanation:

In the above program, we have created three classes A, B and C using
multilevel inheritance concept. Here, constructors of the three classes are called in
the order of derivation. Since super() must be the first statement executed in
subclass’s constructor, this order is the same whether or not super() is used. If
super() is not used, then the default or parameterless constructor of each
superclass will be executed. When inheriting from another class, super() has to be
called first in the constructor. If not, the compiler will insert that call. This is why
super constructor is also invoked when a Sub object is created.

After compiler inserts the super constructor, the sub class constructor looks
like the following:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

B()

{

super();

System.out.println("Inside B’s Constructor");

}

C()

{

super();

System.out.println("Inside C’s Constructor");

}

	TYPES OF INHERITACE:
	Example: Animal  Dog
	Output:
	2. MULTILEVEL INHERITANCE:
	 Example: Animal  Dog  BabyDog
	29. }
	Output: (1)
	3. HIERARCHICAL INHERITANCE
	Hierarchical Inheritance.
	Why multiple inheritance is not supported in java?
	Program : (Shape.java)
	Program : (Rectangle.java)
	Program : (TestProgram.java)
	When Constructors are Called?
	Example:
	Output: (2)
	Program Explanation:

