SOLVED PROBLEMS ON IDEAL AND REAL GASES

Problem 5.1

A vessel of volume $0.3 \mathrm{~m}^{3}$ contains 15 kg of air at 303 K . Determine the pressure exerted by the air using

1. Perfect gas equation

2. Van der Waals equation

3. Generalised compressibility chart.

Take critical temperature of air is $\mathbf{1 3 2 . 8} \mathbf{K}$ and critical pressure of air is 37.7 bar.
Given data:
Volume, $V=0.3 \mathrm{~m}^{3}$
Mass, $m=15 \mathrm{~kg}$
Temperature, $T=303 \mathrm{~K}$
Critical temperature, $\left(T_{c}\right)=132.8 \mathrm{~K}$
Critical pressure, $\left(p_{c}\right)=37.7 \mathrm{bar}=37.7 \times 100=3770 \mathrm{kN} / \mathrm{m}^{2}$
Solution:

1. Perfect gas equation:
$p V=m R T$

$$
p=\frac{m R T}{V}
$$

$$
p=\frac{15 \times 0.287 \times 303}{0.3}
$$

$$
\left[\because R \text { for air is } 0.287 \mathrm{~kJ} / \mathrm{kgK} \text { and } 1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}\right]
$$

$$
p=4348.05 \mathrm{kPa}
$$

Ans.

2. Van der Waals equation:

$$
\begin{aligned}
\left(p+\frac{a}{v^{2}}\right)(v-b) & =R T \\
a & =\frac{27 R^{2}\left(T_{c}\right)^{2}}{64 p_{c}}=\frac{27 \times(0.287)^{2} \times(132.8)^{2}}{64 \times 3770}=0.163
\end{aligned}
$$

We know that

$$
b=\frac{R T_{c}}{8 p_{c}}=\frac{0.287 \times 132.8}{8 \times 3770}=1.26 \times 10^{-3}
$$

Specific volume, $\quad v=\frac{\text { Volume }}{\text { Mass }}=\frac{V}{m}=\frac{0.3}{15}=0.02 \mathrm{~m}^{3} / \mathrm{kg}$
Substituting a, b and v values in Van der Waals Equation

$$
\begin{aligned}
\left(p+\frac{0.163}{(0.02)^{2}}\right)\left(0.02-1.26 \times 10^{-3}\right) & =0.287 \times 303 \\
p & =4232.9 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Ans.

3. Generalised compressibility chart:

Reduced temperature and reduced specific volume can be calculated as follows:

$$
\begin{aligned}
& T_{r}=\frac{T}{T_{c}}=\frac{303}{132.8}=2.28 \\
& v_{r}=\frac{v}{v_{c}}=\frac{v}{\frac{R T_{c}}{p_{c}}}=\frac{v p_{c}}{R T_{c}}=\frac{0.02 \times 3770}{0.287 \times 132.8}=1.98
\end{aligned}
$$

The reduced temperature is 2.28 and reduced specific volume is 1.98 . Both intersect at one point. Mark this point on compressibility chart. From chart, corresponding Z value can be read as 0.99 .

We know that compressibility factor, $Z=\frac{p v}{R T}$

$$
\begin{aligned}
& 0.99 & =\frac{p \times 0.02}{0.287 \times 303} \\
\therefore & p & =4304.57 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Ans

Problem 5.2

The gas neon has a molecular weight of 20.183 and its critical temperature, pressure and volume are $46 \mathrm{~K}, 2.5 \mathrm{MPa}$ and $0.05 \mathrm{~m} 3 / \mathrm{kmol}$. Reading from a compressibility chart for a reduced pressure of 2 and a reduced temperature of 1.2, the compressibility factor Z is 0.75 . What are the corresponding specific volume, pressure, temperature and reduced volume?

Given data:
Molecular weight of neon $=20.183$
Critical temperature, $T_{c}=46 \mathrm{~K}$
Critical pressure, $p_{c}=2.5 \mathrm{MPa}$
Critical volume, $v_{c}=0.05 \mathrm{~m}^{3} / \mathrm{kmol}$
$T_{r}=1.2$
$P_{r}=2$
$Z=0.75$

Solution:

We know that $\quad p_{r}=\frac{p}{p_{c}}=2$
\therefore Pressure, $\quad p=p_{r} \times p_{c}=2 \times 2.5=5 \mathrm{MPa}$
Ans.
We know that $\quad T_{r}=\frac{T}{T_{c}}=1.2$
\therefore Temperature, $\quad T=T_{r} \times T_{c}=1.2 \times 46=\mathbf{5 5 . 2} \mathrm{K}$
Ans.

Figure 5.6
We know that

$$
\begin{aligned}
p v & =Z R T \\
\therefore \quad v & =\frac{Z R T}{p}
\end{aligned}
$$

Also, gas constant, $\quad R=\frac{\bar{R}}{M}=\frac{8.314}{20.183}=0.412 \mathrm{~kJ} / \mathrm{kgK}$

$$
[\because \bar{R}=8.314 \mathrm{~kJ} / \mathrm{kmol} \mathrm{~K} \text { and } M=20.183 \mathrm{~kg}
$$

$$
\therefore \quad v=\frac{0.75 \times 0.412 \times 55.2}{5 \times 10^{3}}=0.00341 \mathrm{~m}^{3} / \mathrm{kg}
$$

Volume ratio, $\quad v_{r}=\frac{v}{v_{c}}=\frac{0.00341 \times 20.183}{0.05}=\mathbf{1 . 3 8}$ Ans.

Problem 5.3

Compute the specific volume of steam at 0.9 bar and 570 K using Van der Waals equation. Take critical temperature of steam as 647.3 K and critical pressure as 220.9 bar.

Given data:

Pressure, $p=0.9 \mathrm{bar}=0.9 \times 100 \mathrm{kN} / \mathrm{m}^{2}=90 \mathrm{kPa}$
$\left[\because 1\right.$ bar $\left.=100 \mathrm{kN} / \mathrm{m}^{2}=100 \mathrm{kPa}\right]$
Temperature, $T=570 \mathrm{~K}$
Critical temperature, $T_{c}=647.3 \mathrm{~K}$
Critical pressure, $p_{c}=220.9 \mathrm{bar}=220.9 \times 100=22090 \mathrm{kPa}$
Solution:We know that Van der Waals equation

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left(p+\frac{a}{v^{2}}\right)(v-b)=R T \\
& \text { where } \quad \begin{aligned}
& a=\frac{27 R^{2}\left(T_{c}\right)^{2}}{64 p_{c}} \\
& R=\frac{\text { Universal gas constant }}{\text { Molecular weight of steam }} \\
& \text { where } \\
& \text { Molecular weight of steam }\left(\mathrm{H}_{2} \mathrm{O}\right), M=2 \times 1+16=18 \mathrm{~kg} / \mathrm{kmol} \\
& \therefore R=\frac{8.314}{18}=0.462 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned} \\
& \qquad a=\frac{27 \times(0.462)^{2} \times(647.3)^{2}}{64 \times 22090}=1.71 \\
& \text { We know that } \quad b=\frac{R T_{c}}{8 p_{c}}=\frac{0.462 \times 647.3}{8 \times 22090}=1.69 \times 10^{-3}
\end{aligned}
\end{aligned}
$$

Substituting a, b and pressure and temperature values in Van der Waals equation,

$$
\begin{aligned}
\left(90+\frac{1.71}{v^{2}}\right) \times\left(v-1.69 \times 10^{-3}\right) & =0.462 \times 570 \\
\left(90+\frac{1.71}{v^{2}}\right)\left(v-1.69 \times 10^{-3}\right) & =263.34 \\
\left(90 v^{2}+1.71\right)\left(v-1.69 \times 10^{-3}\right) & =263.34 v^{2} \\
90 v^{3}-0.1521 v^{2}+1.71 v-0.0028899 & =263.34 v^{2} \\
90 v^{3}-263.4921 v^{2}+1.71 v-0.0028899 & =0 \\
\text { By trial and error method, specific volume } \quad v & =0.0018 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Problem 5.4

A perfect gas of 0.2 kg has a pressure of 300 kPa , a temperature of $40^{\circ} \mathrm{C}$ and a volume of 0.06 m . The gas undergoes an irreversible adiabatic process to a final pressure of 400 kPa and final volume of $0.15 \mathrm{~m}^{3}$, work done on the gas is 50 kJ . Find C_{p} and C_{r}.

Given data:
$m=0.2 \mathrm{~kg}$
$p_{1}=300 \mathrm{kPa}$
$T_{1}=40^{\circ} \mathrm{C}=40+273=313 \mathrm{~K}$
$v_{1}=0.06 \mathrm{~m}^{3}$
$p_{2}=400 \mathrm{kPa}$
$v_{2}=0.15 \mathrm{~m}^{3}$
$W=-50 \mathrm{~kJ}$ [Work done on the gas is negative value]

Solution:

We know that the perfect gas equation is written as
PV=MRT

$$
\begin{aligned}
p_{1} v_{1} & =m R T_{1} \\
R & =\frac{p_{1} v_{1}}{m T_{1}}=\frac{300 \times 0.06}{0.2 \times 313}=0.288 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Similarly, $\quad p_{2} v_{2}=m R T_{2}$

$$
T_{2}=\frac{p_{2} v_{2}}{m R}=\frac{400 \times 0.15}{0.2 \times 0.288}=1041.67 \mathrm{~K}
$$

Heat transfer, $\quad Q=W+\Delta U$

$$
\begin{aligned}
& Q=W+m C_{v}\left(T_{2}-T_{1}\right) \quad\left[\because \Delta U=m C_{v}\left(T_{2}-1\right.\right. \\
& Q=-50+0.2 \times C_{v}(1041.67-313)
\end{aligned}
$$

For adiabatic process,

$$
\begin{array}{ll}
Q & =0 \\
\therefore \quad 0 & =-50+0.2 \times C_{v}(1041.67-313) \\
C_{v} & =0.343 \mathrm{~kJ} / \mathrm{kgK}
\end{array}
$$

Ans.
We know that $R=C_{p}-C_{v}$

$$
\begin{aligned}
0.288 & =C_{p}-0.343 \\
C_{p} & =0.631 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Ans.

