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T 

1 

 

Entropy 
The second law leads to the definition of a new property called entropy. 

 

The Clausius Inequality 

The first law is simply an energy balance. However, the second law leads to an inequality; 
an irreversible process is less efficient than a reversible process. Another important 
inequality in thermodynamics is the Clausius inequality: 

Q 
 0

 

T 

That is, the cyclic integral of δQ / T is always less than or equal to zero. This is valid for all 
cycles, reversible or irreversible. 

For internally reversible cycles, it can be shown that: 

Q 
 0

 

T int,rev 

 

Entropy 

The Clausius inequality forms the basis for the definition of a new property called entropy. 
As can be seen in the equation above, for an internally reversible process the cyclic 
integral of δQ / T is zero. A quantity whose cyclic integral is zero depends on the state only 
and not the process path, and thus it is a property. 

Clausius in 1865 realized that he discovered a new property and he called it entropy: 

dS  
 Q  (kJ/K) 
 
 int,rev 

 

Entropy per unit mass is designated by s (kJ/kg.K). 

The entropy change of a system during a process can be calculated: 
2  Q 

S  S2  S1   T
 
int,rev 

(kJ/K) 

 

To perform this integral, one needs to know the relation between Q and T during the 
process. 

Note that the cyclic integral of δQ / T will give us the entropy change only if the 
integration carried out along an internally reversible path between two states. 

For irreversible processes, we may imagine a reversible process between the two states 
(initial and final) and calculate the entropy change (since entropy is a property). 




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



The Increase of Entropy Principle 

Entropy change of a closed system during an irreversible process is greater that the 
integral of δQ / T evaluated for the process. In the limiting case of a reversible process, 
they become equal. 

dS  
Q

 
T 

The entropy generated during a process is called entropy generation, and is denoted by 
Sgen, 

2 Q 

S  S2  S1  
1 

 Sgen 

Note that the entropy generation Sgen is always a positive quantity or zero (reversible 
process). Its value depends on the process, thus it is not a property of a system. 

The entropy of an isolated system during a process always increases, or in the limiting 
case of a reversible process remains constant (it never decreases). This is known as the 
increase of entropy principle. 

The entropy change of a system or its surroundings can be negative; but entropy 
generation cannot. 

 
S gen 

 0 

 
 
 0 

 0 

irreversible process 

reversible process 

impossible process 

1‐ A process must proceeds in the direction that complies with the increase of entropy 
principle, Sgen > 0. A process that violates this principle is impossible. 

2‐ Entropy is a non‐conserved property, and there is no such thing as the conservation of 
entropy. Therefore, the entropy of universe is continuously increasing. 

3‐ The performance of engineering systems is degraded by the presence of irreversibility. 
The entropy generation is a measure of the magnitudes of the irreversibility present 
during the process. 

 

Entropy Balance 

Entropy is a measure of molecular disorder or randomness of a system, and the second 
law states that entropy can be created but it cannot be destroyed. 

The increase of entropy principle is expressed as 

Entropy change = Entropy transfer + Entropy generation 

Ssystem  Stransfer  S gen 

This is called the entropy balance. 

T 
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Q 

Entropy Change 

The entropy balance is easier to apply that energy balance, since unlike energy (which has 
many forms such as heat and work) entropy has only one form. The entropy change for a 
system during a process is: 

Entropy change = Entropy at final state ‐ Entropy at initial state 

Ssystem  S final  Sinitial 

Therefore, the entropy change of a system is zero if the state of the system does not 
change during the process. For example entropy change of steady flow devices such as 
nozzles, compressors, turbines, pumps, and heat exchangers is zero during steady 
operation. 

 

Mechanisms of Entropy Transfer 

Entropy can be transferred to or from a system in two forms: heat transfer and mass flow. 
Thus, the entropy transfer for an adiabatic closed system is zero. 

Heat Transfer: heat is a form of disorganized energy and some disorganization (entropy) 
will flow with heat. Heat rejection is the only way that the entropy of a fixed mass can be 
decreased. The ratio of the heat transfer Q/ T (absolute temperature) at a location is 
called entropy flow or entropy transfer 

 

Entropy transfer with heat (T  const.) Sheat    
T

 

Since T (in Kelvin) is always positive, the direction of entropy transfer is the same of the 
direction of heat transfer. 

When two systems are in contact, the entropy transfer from warmer system is equal to 
the entropy transfer to the colder system since the boundary has no thickness and 
occupies no volume. 

Note that work is entropy‐free, and no entropy is transferred with work. 

Mass Flow: mass contains entropy as well as energy, both entropy and energy contents of 
a system are proportional to the mass. When a mass in the amount of m enters or leaves 
a system, entropy in the amount of ms (s is the specific entropy) accompanies it. 

 

Entropy Balance for a Closed System 

A closed system includes no mass flow across its boundaries, and the entropy change is 
simply the difference between the initial and final entropies of the system. 

The entropy change of a closed system is due to the entropy transfer accompanying heat 
transfer and the entropy generation within the system boundaries: 

Entropy change of the system = Entropy transfer with heat + Entropy generation 
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S2  S1  
Qk 

Tk 

 S gen 

 

Therefore, for an adiabatic closed system, we have: 

ΔSadiabatic = Sgen 

For an internally reversible adiabatic process ΔS = 0, because Sgen= 0. 

The total entropy generated during a process can be determined by applying the entropy 
balance to an extended system that includes both the system and its immediate 
surroundings where external irreversibility might be occurring. 

Example 1: Entropy balance for a closed system 

Saturated liquid water at 100 C is contained in a piston‐cylinder assembly. The water 
undergoes a process to the corresponding saturated vapor state, during which the piston 
moves freely in the cylinder. There is no heat transfer with the surroundings. If the change 
of state is brought about by the action of a paddle wheel, determine the network per unit 
mass, in kJ/kg, and the amount of entropy produced per unit mass, in kJ/kg.K. 

 
 
 
 
 

 

Insulated 

Water 
 
 
 

 
Paddle wheel 

 
 

Assumptions: 

1‐ The water in the piston‐cylinder assembly is a closed system. 

2‐ There is no heat transfer with the surroundings. 

3‐ The system is at an equilibrium state initially and finally. ΔPE = ΔKE = 0. 
 
 

Solution 

The network can be calculated by using the law: 

ΔU + ΔKE + ΔPE = Q – W 

That is simplifies to: ΔU = ‐ W 
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 T 

e i 

On a unit mass basis, the energy balance becomes: 

W / m = ‐ (ug – uf) 

From Table A‐4, 

W / m = ‐ 2087.6 kJ/kg 

The negative sign indicates that the work input by the stirring is greater than the work 
done by the water as it expands. 

Using an entropy balance, the amount of entropy produced can be found. Since there is 
no heat transfer, 

2  Q 
S    

1 
  S gen  S gen 


On a unit mass basis, this becomes: 

Using Table A‐4 

 
0 

 

 

 

Sgen / m = sg ‐ sf 

Sgen / m = 6.048 kJ / kg.K 
 

Entropy Balance for a Control Volume 

In addition to methods discussed for closed system, the entropy can be exchanged 
through mass flows across the boundaries of the control volume. 

 
 

m°i 

si 
 
 
 

Q° 
m°o 

se 
 
 

The entropy balance in the rate form for a control volume becomes: 
dS Q 
  CV     k       m s   m s  S 

dt Tk 
i    i e   e gen,CV 

For a steady‐state steady‐flow process, it simplifies to: 

Q 




gen,CV   m s   m s  k  

Tk 

 
Control 
volume 

T 

S e i 



DEPARTMENT OF MECHANICAL ENGINEERING                               ME3391  ENGINEERING THERMODYNAMICS 



Q 

2 

Example 2: Entropy balance for a CV 

Steam enters a turbine with a pressure of 3 MPa, a temperature of 400 °C, and a velocity 
of 160 m/s. Saturated vapor at 100 °C exits with a velocity of 100 m/s. At steady‐state, the 
turbine develops work equal to 540 kJ/kg. Heat transfer between the turbine and its 
surroundings occur at an average outer surface temperature of 350 K. Determine the rate 
at which entropy is produced within the turbine per kg of steam flowing, in kJ/kg.K. 
Neglect the change in potential energy between inlet and exit. 

Assumptions: 

1‐ Steady state operation in CV. ΔPE = 0. 

2‐ Turbine outer surface is at a specified average temperature. 
 

P1 = 3 MPa 

T1 = 400 °C 

V1 = 160 m/s 

 
 

W° / m = 540 kJ/kg 

 

Turbine 
 
 
 

 
 

Tb = 350 K 

T2 = 100 °C 

V2 = 100 m/s 

Sat. vapor 

From the mass balance, we know that m° = m°1 = m°2 

Since the process is steady‐state, one can write: 

Q 


0   k  m (s Tk  se 


gen,CV 
 

The heat transfer occurs at Tb = 350 K, the first term of the right hand side of the entropy 
balance reduces to Q°/ Tb 



gen,CV 

m





  k 
mT 

 
 (s2 

 
 s1 ) 

 

We need to calculate the rate of heat transfer. The first law (energy balance) can be used 
to find the heat transfer rate. Combining the mass balance and the first law, one finds: 

Q W 
 V 2  V 2 

     CV       CV  h  h    
2 1 

m m 2 1 
 

)  S 

S 

k 

i 
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Q 

From Table A‐6, h1 = 3230.9 kJ/kg, and From A‐4 h2 = 2676.1 kJ/kg. After substitution, and 
converting the units, one finds: 

Q
   CV  22.6 
m


kJ / kg 

 

From Table A‐4, s2 = 7.3549 kJ/kg.K and from Table A‐6, s1 = 6.9212 kJ/kg.K. Inserting 
values into the expression for entropy production: 

 



gen,CV 

m





  k 
mT 

 
 (s2 

 
 s1 )  0.4983 

 
kJ / kg.K 

 

Entropy 

Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As 
a system becomes more disordered, the positions of the molecules become less 
predictable and the entropy increases. 

 

 

Fig. 1: Entropy of a substance (level of disorder) increases when it melts from solid phase 
to liquid. Ssolid < Sliquid< Sgas 

Some remarks: 

Work is an organized form of energy, free of disorder or randomness, thus free of 
entropy. Therefore, there is no entropy associated with energy transfer as work. 

The quantity of energy is always preserved during an actual process, based on the first 
law, but the quality is bound to decrease (the second law). 

Processes can occur only in the direction of increased overall entropy or molecular 
disorder. Thus, the entire universe is getting more and more chaotic every day. 

At absolute zero (0 K), molecules become completely motionless, this represents a state of 
ultimate molecular order (and minimum energy). Therefore, the entropy of a pure 

S 

k 

Entropy 

kJ/(kg.K) Gas 

Liquid 

Solid 
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crystalline substance at zero temperature is zero. That is because; there is no uncertainty 
about the state of the molecules at that instant. This statement is the third law of 
thermodynamics. 

Since there is a reference for entropy (absolute zero), entropy is an absolute property. The 
entropy measured with respect to absolute zero is called absolute entropy. 

The two diagrams used most extensively in the second‐law analysis are the T‐s and h‐s 
diagrams. For an internally reversible process, one can write: 

Qint,rev  Tds (kJ) 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

s 

 

Fig. 2: On a T‐s diagram, the area under an internally reversible process presents the heat 
transfer for the process. 

For an internally reversible isothermal process, we have: 

Q int,rev = T0 ds 

In a T‐s diagram, an isentropic process is represented by a vertical line. An isentropic 
process is a process in which entropy remains constant. As a result an isentropic process 
involves no heat transfer. Therefore: 

Isentropic process (s2 = s1) = Reversible + Adiabatic 
 

Evaluation of Entropy Change 

The differential form of the conservation of energy for a closed system (fixed mass) for an 
internally reversible process is: 

 
 

where, 
 
 

 
Thus, 

δQint,rev ‐ δWint,rev = dU 
 
 

δQint,rev= TdS 

δWint,rev = PdV 

T 

Internally 
reversible 
process 

Q = ∫Tds 



DEPARTMENT OF MECHANICAL ENGINEERING                               ME3391  ENGINEERING THERMODYNAMICS 

 

or, per unit mass 
 
 

This is called the first Gibbs equation. 

TdS = dU + PdV 

Tds = du + Pdv 

From the definition of enthalpy, h = u + Pv, one can find: 

h = u + Pv → dh = du + Pdv + vdP 

Eliminating du from the first Gibbs equation, one finds the second Gibbs equation: 

Tds = dh – vdP 

Explicit relations for differential changes in entropy can be obtained from Gibbs 
equations: 

ds  
du 

 
Pdv 

T T 

ds  
dh 

 
vdP 

T T 

To calculate the entropy change, we must know the relationship between du or dh and 
temperature. 

 

Calculation of the Entropy for Saturated Mixture 

Use Tables A‐4 and A‐5 to find sf, sg and/or sfg for the following: 

s = (1 − x)sf + x sg or s = sf + x sfg 
 

Calculation of the Entropy for Superheated Vapor 

Given two properties or the state, such as temperature and pressure, use Table A‐6. 
 

Calculation of the Entropy for Compressed Liquid 

In the absence of compressed liquid data for a property s ≈ sf@T 
 

Entropy Change of Solids and Liquids 

Solids and liquids can be assumed as incompressible substances since their volumes 
remains essentially constant during a process. Thus, the first Gibbs equation becomes: 

ds  
du 

 
cdT 

T T 
2 dT 

s2  s1  c(T ) 
1 

 

Assuming an averaged value for specific heat, one obtains: 

T 
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s2  s1  cave 
ln 

T2
 

T1 

Note that the entropy change of an incompressible substance is only a function of 
temperature. Therefore, for an isentropic process where s2 = s1, one can find: 

T2 = T1 
 

Entropy Change of Ideal Gas 

The entropy change of an ideal gas can be obtained, by substituting du = cv dT and P = 
RT/v into Gibbs equation. 

 
ds  c dT 

 R 
dv 

  

v T v 
2 dT v 

s2  s1   cv (T ) 
1 

 R ln 2  
v1 

Assuming averaged values for specific heats, one obtains: 

s  s  c ln 
T2  R ln 

v2 kJ
 

   

2 1 v,ave 

1 v1 kg.K 

s  s  c ln 
T2  R ln 

P2 kJ
 

   

2 1 p,ave 

1 P1 kg.K 

For isentropic processes of ideal gases, the following relationships can be found by setting 
ds = 0, 

ln 
T2

 

T1 

  
R

 

Cv 

ln 
v2

 

v1 

R 
 

 

 

 

 

 

 
k 1 

Since R = cp – cv, k = cp / cv, and thus R / cv = k – 1. 

In a similar manner, one finds: 

 T   P 
( k 1) / k 

 2    2  isentropic process 

 T1   P1 

 P   v 
k

 

 2    1  isentropic process 

 P1   v2 

These equations can be expressed in the following compact forms: 

Tvk ‐1 = constant 

TP(1 – k) / k = constant 

T 

T 

T 
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Pvk = constant 

The specific ratio k, varies with temperature, and in isentropic relations above an average 
k value should be used. 

Example 3: Isentropic process of ideal gas 

A rigid, well‐insulated tank is filled initially with 5 kg of air at pressure 500 kPa and a 
temperature 500 K. A leak develops, and air slowly escapes until the pressure of the air 
remaining in the tank is 100 kPa. Using the ideal gas model, determine the amount of 
mass remaining in the tank and its temperature. 

 
 

Mass initially in the 
tank that remains in 
the tank (m2) 

Slow leak 

 

 

Insulated tank Mass initially in the 
tank that escapes 
(m1) 

 

 

Assumptions: 

1‐ As shown in the figure, the closed system is the mass initially in the tank that remains in 
the tank. 

2‐ There is no significant heat transfer between the system and its surroundings. 

3‐ Irreversibilities within the tank can be ignored as the air slowly escapes. 

Solutions: 

Using the ideal gas equation of state, the mass initially in the tank that remains in the tank 
at the end of process is: 

m  
P2V 

m1 P1V 

  

RT1  

Since the volume of the tank V remains constant during the process. We need to find the 
final temperature T2. For the closed system under consideration (m1), there are no 
irreversibilities, and no heat transfer. Accordingly, it is an isentropic process, and thus the 
isentropic relationships can be used: 

T  P 
k 1/ k 

 P 
k 1/ k 

    2     2  T  T  2 
T1  P1  P1 

2 1 
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

    2 1  

With a constant k = 1.4 for air, after substituting values, one finds: 

T2 = 315.55 K 

Finally, inserting values into the expression for system mass 

m2 = (100/500) (500/315.55) (5 kg) = 1.58 kg 
 

Reversible Steady‐Flow Work 

The conservation of energy equation for a steady‐flow device undergoing an internally 
reversible process can be expressed in differential form as 

qrev  wrev  dh  dke  dpe 

But 

qrev  Tds 
 
 q  dh  vdP 

Tds  dh  vdP



rev 

 

Substituting into the relation above, after canceling dh, it yields, 

‐δwrev = vdP + dke + dpe 

Integrating, we find 
 

2 

wrev   vdP  ke  pe 
1 

 
(kJ / kg) 

With negligible changes in potential and kinetic energies, 
2 

wrev   vdP 
1 

(kJ / kg) 

From the above equation can be seen that, the larger the specific volume the larger the 
reversible produced or consumed work by the steady‐flow device. Thus, every effort 
should be made to keep the specific volume of the flow as small as possible during a 
compression process to minimize the input work. 

When the fluid is incompressible, the specific volume remains constant during the 
process, thus the above equation becomes: 

δwrev = v(P1 – P2) – Δke – Δpe (kJ/kg) 

For a steady‐state flow of a liquid through a device that involves no work interactions 
(such as nozzle or a pipe section), the work term is zero, 

vP2 

 

 P1   
V 2  V 2 




2 
gz2  z1   0 

This is known as Bernoulli equation in fluid mechanics. 
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