
 UNIT V – BRANCH AND BOUND AND BACKTRACKING
 Backtracking: N-Queens problem - Hamiltonian cycles – Graph coloring – Sum of
 subset. Branch and bound: The method – FIFO branch and bound- LC branch and
 bound – 0/1 Knapsack problem - Traveling salesman problem.

 BRANCH AND BOUND
 Branch and bound (BB, B&B, or BnB) is a method for solving optimization

 problems by breaking them down into smaller sub-problems and using a bounding
 function to eliminate sub-problems that cannot contain the optimal solution. It is an
 algorithm design paradigm for discrete and combinatorial optimization problems, as
 well as mathematical optimization . A branch-and-bound algorithm consists of a
 systematic enumeration of candidate solutions by means of state space search : the set
 of candidate solutions is thought of as forming a rooted tree with the full set at the root.
 The algorithm explores branches of this tree, which represent subsets of the solution
 set. Before enumerating the candidate solutions of a branch, the branch is checked
 against upper and lower estimated bounds on the optimal solution, and is discarded if it
 cannot produce a better solution than the best one found so far by the algorithm.
 The Branch and Bound Algorithm is a method used in combinatorial optimization
 problems to systematically search for the best solution. It works by dividing the
 problem into smaller subproblems, or branches, and then eliminating certain branches
 based on bounds on the optimal solution. This process continues until the best solution
 is found or all branches have been explored. Branch and Bound is commonly used in
 problems like the traveling salesman and job scheduling.
 Different search techniques in branch and bound:
 The Branch algorithms incorporate different search techniques to traverse a state space
 tree. Different search techniques used in B&B are listed below:

 1. LC search
 2. BFS
 3. DFS

 1. LC search (Least Cost Search):
 It uses a heuristic cost function to compute the bound values at each node. Nodes are
 added to the list of live nodes as soon as they get generated.
 The node with the least value of a cost function selected as a next E-node.
 2.BFS(Breadth First Search):
 It is also known as a FIFO search.
 It maintains the list of live nodes in first-in-first-out order i.e, in a queue, The live nodes
 are searched in the FIFO order to make them next E-nodes.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithmic_paradigm
https://en.wikipedia.org/wiki/Discrete_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/State_space_search
https://en.wikipedia.org/wiki/Tree_(graph_theory)

 3. DFS (Depth First Search):
 It is also known as a LIFO search.
 It maintains the list of live nodes in last-in-first-out order i.e. in a stack.
 The live nodes are searched in the LIFO order to make them next E-nodes.
 When to apply Branch and Bound Algorithms?
 Branch and bound is an effective solution to some problems, which we have already
 discussed. We’ll discuss all such cases where branching and binding are appropriate in
 this section.
 ● It is appropriate to use a branch and bound approach if the given problem is discrete

 optimization. Discrete optimization refers to problems in which the variables belong
 to the discrete set. Examples of such problems include 0-1 Integer Programming and
 Network Flow problems.

 ● When it comes to combinatory optimization problems, branch and bound work well.
 An optimization problem is optimized by combinatory optimization by finding its
 maximum or minimum based on its objective function. The combinatory optimization
 problems include Boolean Satisfiability and Integer Linear Programming.

 Basic Concepts of Branch and Bound:
 ● Generation of a state space tree:
 As in the case of backtracking, B&B generates a state space tree to efficiently search the
 solution space of a given problem instance.
 In B&B, all children of an E-node in a state space tree are produced before any live node
 gets converted to an E-node. Thus, the E-node remains an E-node until it becomes a dead
 node.
 ● Evaluation of a candidate solution:
 Unlike backtracking, B&B needs additional factors evaluate a candidate solution:
 1. A way to assign a bound on the best values of the given criterion functions to each

 node in a state space tree: It is produced by the addition of further components to the
 partial solution given by that node.

 2. The best values of a given criterion function obtained so far: It describes the upper
 bound for the maximization problem and the lower bound for the minimization
 problem.

 ● A feasible solution is defined by the problem states that satisfy all the given
 constraints.

 ● An optimal solution is a feasible solution, which produces the best value of a given
 objective function.

 ● Bounding function : It optimizes the search for a solution vector in the solution space
 of a given problem instance. It is a heuristic function that evaluates the lower and

 upper bounds on the possible solutions at each node. The bound values are used to
 search the partial solutions leading to an optimal solution. If a node does not produce
 a solution better than the best solution obtained thus far, then it is abandoned without
 further exploration.

 Classification of Branch and Bound Problems:
 The Branch and Bound method can be classified into three types based on the order in
 which the state space tree is searched.

 1. FIFO Branch and Bound
 2. LIFO Branch and Bound
 3. Least Cost-Branch and Bound

 1. FIFO Branch and Bound
 First-In-First-Out is an approach to the branch and bound problem that uses the

 queue approach to create a state-space tree. In this case, the breadth-first search is
 performed, that is, the elements at a certain level are all searched, and then the elements
 at the next level are searched, starting with the first child of the first node at the previous
 level.

 For a given set {A, B, C, D}, the state space tree will be constructed as follows :

 State Space tree for set {A, B, C, D}
 The above diagram shows that we first consider element A, then element B, then

 element C and finally we’ll consider the last element which is D. We are performing BFS
 while exploring the nodes.

 So, once the first level is completed. We’ll consider the first element, then we can
 consider either B, C, or D. If we follow the route then it says that we are doing elements
 A and D so we will not consider elements B and C. If we select the elements A and D
 only, then it says that we are selecting elements A and D and we are not considering
 elements B and C.

 Selecting element A
 Now, we will expand node 3, as we have considered element B and not considered

 element A, so, we have two options to explore that are elements C and D. Let’s create
 nodes 9 and 10 for elements C and D respectively.

 Considered element B and not considered element A
 Now, we will expand node 4 as we have only considered elements C and not

 considered elements A and B, so, we have only one option to explore which is element
 D. Let’s create node 11 for D.

 Considered elements C and not considered elements A and B
 Till node 5, we have only considered elements D, and not selected elements A, B,

 and C. So, We have no more elements to explore, Therefore on node 5, there won’t be
 any expansion.

 Now, we will expand node 6 as we have considered elements A and B, so, we have
 only two options to explore that is element C and D. Let’s create node 12 and 13 for C
 and D respectively.

 Expand node 6

 Now, we will expand node 7 as we have considered elements A and C and not
 consider element B, so, we have only one option to explore which is element D. Let’s
 create node 14 for D.

 Expand node 7
 Till node 8, we have considered elements A and D, and not selected elements B and C,
 So, We have no more elements to explore, Therefore on node 8, there won’t be any
 expansion.
 Now, we will expand node 9 as we have considered elements B and C and not considered
 element A, so, we have only one option to explore which is element D. Let’s create node
 15 for D.

 Expand node 9

 2. LIFO Branch and Bound
 The Last-In-First-Out approach for this problem uses stack in creating the state space
 tree. When nodes are added to a state space tree, they are added to a stack. After all nodes
 of a level have been added, we pop the topmost element from the stack and explore it.
 For a given set {A, B, C, D}, the state space tree will be constructed as follows :

 State space tree for element {A, B, C, D}
 Now the expansion would be based on the node that appears on the top of the

 stack. Since node 5 appears on the top of the stack, so we will expand node 5. We will
 pop out node 5 from the stack. Since node 5 is in the last element, i.e., D so there is no
 further scope for expansion.

 The next node that appears on the top of the stack is node 4. Pop-out node 4 and
 expand. On expansion, element D will be considered and node 6 will be added to the
 stack shown below:

 Expand node 4
 The next node is 6 which is to be expanded. Pop-out node 6 and expand. Since

 node 6 is in the last element, i.e., D so there is no further scope for expansion.

 The next node to be expanded is node 3. Since node 3 works on element B so node
 3 will be expanded to two nodes, i.e., 7 and 8 working on elements C and D respectively.
 Nodes 7 and 8 will be pushed into the stack.

 The next node that appears on the top of the stack is node 8. Pop-out node 8 and
 expand. Since node 8 works on element D so there is no further scope for the expansion.

 Expand node 3
 The next node that appears on the top of the stack is node 7. Pop-out node 7 and

 expand. Since node 7 works on element C so node 7 will be further expanded to node 9
 which works on element D and node 9 will be pushed into the stack.

 The next node is 6 which is to be expanded. Pop-out node 6 and expand. Since
 node 6 is in the last element, i.e., D so there is no further scope for expansion.

 Expand node 7
 The next node that appears on the top of the stack is node 9. Since node 9 works

 on element D, there is no further scope for expansion.

 The next node that appears on the top of the stack is node 2. Since node 2 works
 on the element A so it means that node 2 can be further expanded. It can be expanded up
 to three nodes named 10, 11, 12 working on elements B, C, and D respectively. There
 new nodes will be pushed into the stack shown as below:

 Expand node 2

 In the above method, we explored all the nodes using the stack that follows the LIFO
 principle.
 3. Least Cost-Branch and Bound

 To explore the state space tree, this method uses the cost function. The previous
 two methods also calculate the cost function at each node but the cost is not used for
 further exploration.

 In this technique, nodes are explored based on their costs, the cost of the node can
 be defined using the problem and with the help of the given problem, we can define the
 cost function. Once the cost function is defined, we can define the cost of the node.

 Now, Consider a node whose cost has been determined. If this value is greater than
 U0, this node or its children will not be able to give a solution. As a result, we can kill
 this node and not explore its further branches. As a result, this method prevents us from
 exploring cases that are not worth it, which makes it more efficient for us.
 Let’s first consider node 1 having cost infinity shown below:
 In the following diagram, node 1 is expanded into four nodes named 2, 3, 4, and 5.

 Node 1 is expanded into four nodes named 2, 3, 4, and 5
 Assume that the cost of the nodes 2, 3, 4, and 5 are 12, 16, 10, and 315

 respectively. In this method, we will explore the node which has the least cost. In the
 above figure, we can observe that the node with a minimum cost is node 4. So, we will
 explore node 4 having a cost of 10.

 During exploring node 4 which is element C, we can notice that there is only one
 possible element that remains unexplored which is D (i.e, we already decided not to
 select elements A, and B). So, it will get expanded to one single element D, let’s say this
 node number is 6.

 Exploring node 4 which is element C
 Now, Node 6 has no element left to explore. So, there is no further scope for expansion.
 Hence the element {C, D} is the optimal way to choose for the least cost.

