
 UNIT IV – DIVIDE & CONQUER, GREEDY AND DYNAMIC PROGRAMMING 
 Divide  and  conquer:  Merge  sort  -  Quick  sort  -  Binary  search.  Greedy  method: 
 Knapsack  problem-  Job  sequencing  with  deadlines  -  Minimum  cost  spanning  tree  – 
 Single  source  shortest  path.  dynamic  programming:  All  pair  shortest  path  -  Knapsack 
 problem – Traveling salesman problem - Flow shop scheduling. 

 DYNAMIC PROGRAMMING 
 Dynamic  Programming  is  an  algorithmic  technique  used  in  computer  science 

 and  mathematics  to  solve  complex  problems  by  breaking  them  down  into  smaller 
 overlapping  subproblems.  The  core  idea  behind  DP  is  to  store  solutions  to  subproblems 
 so that each is solved only once. 

 To  solve  DP  problems,  we  first  write  a  recursive  solution  in  a  way  that  there  are 
 overlapping  subproblems  in  the  recursion  tree  (the  recursive  function  is  called  with  the 
 same parameters multiple times). 

 To  make  sure  that  a  recursive  value  is  computed  only  once  (to  improve  time 
 taken by algorithm), we store results of the recursive calls. 

 There  are  two  ways  to  store  the  results,  one  is  top  down  (or  memoization)  and 
 other is bottom up (or tabulation). 
 All pair shortest path 

 The  Floyd-Warshall  algorithm,  named  after  its  creators  Robert  Floyd  and 
 Stephen  Warshall,  is  a  fundamental  algorithm  in  computer  science  and  graph  theory.  It 
 is  used  to  find  the  shortest  paths  between  all  pairs  of  nodes  in  a  weighted  graph.  This 
 algorithm  is  highly  efficient  and  can  handle  graphs  with  both  positive  and  negative 
 edge  weights,  making  it  a  versatile  tool  for  solving  a  wide  range  of  network  and 
 connectivity problems. 

 The  Floyd  Warshall  Algorithm  is  an  all  pair  shortest  path  algorithm  unlike 
 Dijkstra  and  Bellman  Ford  which  are  single  source  shortest  path  algorithms.  This 
 algorithm  works  for  both  the  directed  and  undirected  weighted  graphs.  But,  it  does  not 
 work  for  the  graphs  with  negative  cycles  (where  the  sum  of  the  edges  in  a  cycle  is 
 negative).  It  follows  a  Dynamic  Programming  approach  to  check  every  possible  path 
 going  via  every  possible  node  in  order  to  calculate  shortest  distance  between  every  pair 
 of nodes. 
 Floyd Warshall Algorithm: 

 ●  Initialize the solution matrix same as the input graph matrix as a first step. 
 ●  Then  update  the  solution  matrix  by  considering  all  vertices  as  an  intermediate 

 vertex. 
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 ●  The  idea  is  to  pick  all  vertices  one  by  one  and  update  all  shortest  paths  which 
 include the picked vertex as an intermediate vertex in the shortest path. 

 ●  When  we  pick  vertex  number  k  as  an  intermediate  vertex,  we  already  have 
 considered vertices {0, 1, 2, .. k-1} as intermediate vertices. 

 ●  For  every  pair  (i,  j)  of  the  source  and  destination  vertices  respectively,  there  are 
 two possible cases. 

 ○  k  is  not  an  intermediate  vertex  in  the  shortest  path  from  i  to  j.  We  keep 
 the value of dist[i][j] as it is. 

 ○  k  is  an  intermediate  vertex  in  shortest  path  from  i  to  j.  We  update  the 
 value  of  dist[i][j]  as  dist[i][k]  +  dist[k][j],  if  dist[i][j]  >  dist[i][k]  + 
 dist[k][j] 

 Pseudo-Code of Floyd Warshall Algorithm : 
 For k = 0 to n – 1 

 For i = 0 to n – 1 
 For j = 0 to n – 1 

 Distance[i, j] = min(Distance[i, j], Distance[i, k] + Distance[k, j]) 
 where i = source Node, j = Destination Node, k = Intermediate Node 
 Example: [  Follow class notes  ] 
 Time  Complexity:  O(V3),  where  V  is  the  number  of  vertices  in  the  graph  and  we  run 
 three nested loops each of size V 
 Auxiliary  Space:  O(V2),  to  create  a  2-D  matrix  in  order  to  store  the  shortest  distance 
 for each pair of nodes. 

 KNAPSACK PROBLEM 
 Given  N  items  where  each  item  has  some  weight  and  profit  associated  with  it  and  also 
 given  a  bag  with  capacity  W,  [i.e.,  the  bag  can  hold  at  most  W  weight  in  it].  The  task  is 
 to  put  the  items  into  the  bag  such  that  the  sum  of  profits  associated  with  them  is  the 
 maximum  possible.  The  constraint  here  is  we  can  either  put  an  item  completely  into  the 
 bag or cannot put it at all [It is not possible to put a part of an item into the bag]. 
 Follow the below steps to solve the problem: 
 The maximum value obtained from ‘N’ items is the max of the following two values. 

 ●  Case  1  (include  the  Nth  item):  Value  of  the  Nth  item  plus  maximum  value 
 obtained  by  remaining  N-1  items  and  remaining  weight  i.e.  (W-weight  of  the 
 Nth item). 

 ●  Case  2  (exclude  the  Nth  item):  Maximum  value  obtained  by  N-1  items  and  W 
 weight. 



 ●  If  the  weight  of  the  ‘Nth‘  item  is  greater  than  ‘W’,  then  the  Nth  item  cannot  be 
 included and Case 2 is the only possibility. 

 Illustration: 
 #include <stdio.h> 
 int max(int a, int b) { return (a > b) ? a : b; } 
 int knapSack(int W, int wt[], int val[], int n) 
 { 

 if (n == 0 || W == 0) 
 return 0; 

 if (wt[n - 1] > W) 
 return knapSack(W, wt, val, n - 1); 

 else 
 return max( 

 val[n - 1] 
 + knapSack(W - wt[n - 1], wt, val, n - 1), 

 knapSack(W, wt, val, n - 1)); 
 } 
 int main() 
 { 

 int profit[] = { 60, 100, 120 }; 
 int weight[] = { 10, 20, 30 }; 
 int W = 50; 
 int n = sizeof(profit) / sizeof(profit[0]); 
 printf("%d", knapSack(W, weight, profit, n)); 
 return 0; 

 } 
 Example: [  Follow class notes  ] 
 Time Complexity:  O(N * W). As redundant calculations  of states are avoided. 
 Auxiliary  Space:  O(N  *  W)  +  O(N).  The  use  of  a  2D  array  data  structure  for  storing 
 intermediate  states  and  O(N)  auxiliary  stack  space(ASS)  has  been  used  for  recursion 
 stack 

 TRAVELING SALESMAN PROBLEM 
 Given  a  set  of  cities  and  the  distance  between  every  pair  of  cities,  the  problem  is  to  find 
 the  shortest  possible  route  that  visits  every  city  exactly  once  and  returns  to  the  starting 
 point.  Note  the  difference  between  Hamiltonian  Cycle  and  TSP.  The  Hamiltonian  cycle 
 problem  is  to  find  if  there  exists  a  tour  that  visits  every  city  exactly  once.  Here  we 
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 know  that  Hamiltonian  Tour  exists  (because  the  graph  is  complete)  and  in  fact,  many 
 such tours exist, the problem is to find a minimum weight Hamiltonian Cycle. 

 For  example,  consider  the  graph  shown  in  the  figure  on  the  right  side.  A  TSP  tour  in 
 the  graph  is  1-2-4-3-1.  The  cost  of  the  tour  is  10+25+30+15  which  is  80.  The  problem 
 is  a  famous  NP  hard  problem.  There  is  no  polynomial-time  know  solution  for  this 
 problem. The following are different solutions for the traveling salesman problem. 
 Naive Solution: 
 1) Consider city 1 as the starting and ending point. 
 2) Generate all (n-1)!  Permutations  of cities. 
 3)  Calculate  the  cost  of  every  permutation  and  keep  track  of  the  minimum  cost 
 permutation. 
 4) Return the permutation with minimum cost. 

 Let  the  given  set  of  vertices  be  {1,  2,  3,  4,….n}.  Let  us  consider  1  as  the  starting 
 and  ending  point  of  output.  For  every  other  vertex  I  (other  than  1),  we  find  the 
 minimum  cost  path  with  1  as  the  starting  point,  I  as  the  ending  point,  and  all  vertices 
 appearing  exactly  once.  Let  the  cost  of  this  path  cost  (i),  and  the  cost  of  the 
 corresponding  Cycle  would  cost  (i)  +  dist(i,  1)  where  dist(i,  1)  is  the  distance  from  I  to 
 1. Finally, we return the minimum of all [cost(i) + dist(i, 1)] values. 
 Time  Complexity:  O(n2*2n)  where  O(n*  2n)  are  the  maximum  number  of  unique 
 subproblems/states and O(n) for transition (through for loop as in code) in every state. 
 Auxiliary Space:  O(n*2n), where n is the number of  Nodes/Cities here. 

 FLOW-SHOP SCHEDULING 
 Flow-shop  scheduling  is  an  optimization  problem  in  computer  science  and 

 operations  research  .  It  is  a  variant  of  optimal  job  scheduling  .  In  a  general 
 job-scheduling  problem,  we  are  given  n  jobs  J1,  J2,  ...,  Jn  of  varying  processing  times, 
 which  need  to  be  scheduled  on  m  machines  with  varying  processing  power,  while 
 trying  to  minimize  the  makespan  –  the  total  length  of  the  schedule  (that  is,  when  all  the 
 jobs  have  finished  processing).  In  the  specific  variant  known  as  flow-shop  scheduling, 
 each  job  contains  exactly  m  operations.  The  i-th  operation  of  the  job  must  be  executed 
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 on  the  i-th  machine.  No  machine  can  perform  more  than  one  operation  simultaneously. 
 For each operation of each job, execution time is specified. 

 There  are  m  machines  and  n  jobs.  Each  job  contains  exactly  m  operations.  The 
 i-th  operation  of  the  job  must  be  executed  on  the  i-th  machine.  No  machine  can 
 perform  more  than  one  operation  simultaneously.  For  each  operation  of  each  job, 
 execution time is specified. 

 Operations  within  one  job  must  be  performed  in  the  specified  order.  The  first 
 operation  gets  executed  on  the  first  machine,  then  (as  the  first  operation  is  finished)  the 
 second  operation  on  the  second  machine,  and  so  on  until  the  m-th  operation.  Jobs  can 
 be  executed  in  any  order,  however.  Problem  definition  implies  that  this  job  order  is 
 exactly  the  same  for  each  machine.  The  problem  is  to  determine  the  optimal  such 
 arrangement, i.e. the one with the shortest possible total job execution makespan. 
 Algorithm: 
 Algorithm JOHNSON_FLOWSHOP(T, Q) 
 Q = Φ 
 for j = 1 to n do 

 t = minimum machine time scanning in booth columns 
 if t occurs in column 1 then 

 Add Job j to the first empty slot of Q 
 else 

 Add Job j  to last empty slot of Q 
 end 
 Remove processed job from consideration 

 end 
 return Q 
 Example:  [Follow class notes] 
 Two-machine  case:  The  two-machine  permutation  flow-shop  case  can  be  solved  in 
 O(nlogn) time 


