
 UNIT IV – DIVIDE & CONQUER, GREEDY AND DYNAMIC PROGRAMMING
 Divide and conquer: Merge sort - Quick sort - Binary search. Greedy method:
 Knapsack problem- Job sequencing with deadlines - Minimum cost spanning tree –
 Single source shortest path. dynamic programming: All pair shortest path - Knapsack
 problem – Traveling salesman problem - Flow shop scheduling.

 DYNAMIC PROGRAMMING
 Dynamic Programming is an algorithmic technique used in computer science

 and mathematics to solve complex problems by breaking them down into smaller
 overlapping subproblems. The core idea behind DP is to store solutions to subproblems
 so that each is solved only once.

 To solve DP problems, we first write a recursive solution in a way that there are
 overlapping subproblems in the recursion tree (the recursive function is called with the
 same parameters multiple times).

 To make sure that a recursive value is computed only once (to improve time
 taken by algorithm), we store results of the recursive calls.

 There are two ways to store the results, one is top down (or memoization) and
 other is bottom up (or tabulation).
 All pair shortest path

 The Floyd-Warshall algorithm, named after its creators Robert Floyd and
 Stephen Warshall, is a fundamental algorithm in computer science and graph theory. It
 is used to find the shortest paths between all pairs of nodes in a weighted graph. This
 algorithm is highly efficient and can handle graphs with both positive and negative
 edge weights, making it a versatile tool for solving a wide range of network and
 connectivity problems.

 The Floyd Warshall Algorithm is an all pair shortest path algorithm unlike
 Dijkstra and Bellman Ford which are single source shortest path algorithms. This
 algorithm works for both the directed and undirected weighted graphs. But, it does not
 work for the graphs with negative cycles (where the sum of the edges in a cycle is
 negative). It follows a Dynamic Programming approach to check every possible path
 going via every possible node in order to calculate shortest distance between every pair
 of nodes.
 Floyd Warshall Algorithm:

 ● Initialize the solution matrix same as the input graph matrix as a first step.
 ● Then update the solution matrix by considering all vertices as an intermediate

 vertex.

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/introduction-to-dynamic-programming-data-structures-and-algorithm-tutorials/

 ● The idea is to pick all vertices one by one and update all shortest paths which
 include the picked vertex as an intermediate vertex in the shortest path.

 ● When we pick vertex number k as an intermediate vertex, we already have
 considered vertices {0, 1, 2, .. k-1} as intermediate vertices.

 ● For every pair (i, j) of the source and destination vertices respectively, there are
 two possible cases.

 ○ k is not an intermediate vertex in the shortest path from i to j. We keep
 the value of dist[i][j] as it is.

 ○ k is an intermediate vertex in shortest path from i to j. We update the
 value of dist[i][j] as dist[i][k] + dist[k][j], if dist[i][j] > dist[i][k] +
 dist[k][j]

 Pseudo-Code of Floyd Warshall Algorithm :
 For k = 0 to n – 1

 For i = 0 to n – 1
 For j = 0 to n – 1

 Distance[i, j] = min(Distance[i, j], Distance[i, k] + Distance[k, j])
 where i = source Node, j = Destination Node, k = Intermediate Node
 Example: [Follow class notes]
 Time Complexity: O(V3), where V is the number of vertices in the graph and we run
 three nested loops each of size V
 Auxiliary Space: O(V2), to create a 2-D matrix in order to store the shortest distance
 for each pair of nodes.

 KNAPSACK PROBLEM
 Given N items where each item has some weight and profit associated with it and also
 given a bag with capacity W, [i.e., the bag can hold at most W weight in it]. The task is
 to put the items into the bag such that the sum of profits associated with them is the
 maximum possible. The constraint here is we can either put an item completely into the
 bag or cannot put it at all [It is not possible to put a part of an item into the bag].
 Follow the below steps to solve the problem:
 The maximum value obtained from ‘N’ items is the max of the following two values.

 ● Case 1 (include the Nth item): Value of the Nth item plus maximum value
 obtained by remaining N-1 items and remaining weight i.e. (W-weight of the
 Nth item).

 ● Case 2 (exclude the Nth item): Maximum value obtained by N-1 items and W
 weight.

 ● If the weight of the ‘Nth‘ item is greater than ‘W’, then the Nth item cannot be
 included and Case 2 is the only possibility.

 Illustration:
 #include <stdio.h>
 int max(int a, int b) { return (a > b) ? a : b; }
 int knapSack(int W, int wt[], int val[], int n)
 {

 if (n == 0 || W == 0)
 return 0;

 if (wt[n - 1] > W)
 return knapSack(W, wt, val, n - 1);

 else
 return max(

 val[n - 1]
 + knapSack(W - wt[n - 1], wt, val, n - 1),

 knapSack(W, wt, val, n - 1));
 }
 int main()
 {

 int profit[] = { 60, 100, 120 };
 int weight[] = { 10, 20, 30 };
 int W = 50;
 int n = sizeof(profit) / sizeof(profit[0]);
 printf("%d", knapSack(W, weight, profit, n));
 return 0;

 }
 Example: [Follow class notes]
 Time Complexity: O(N * W). As redundant calculations of states are avoided.
 Auxiliary Space: O(N * W) + O(N). The use of a 2D array data structure for storing
 intermediate states and O(N) auxiliary stack space(ASS) has been used for recursion
 stack

 TRAVELING SALESMAN PROBLEM
 Given a set of cities and the distance between every pair of cities, the problem is to find
 the shortest possible route that visits every city exactly once and returns to the starting
 point. Note the difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle
 problem is to find if there exists a tour that visits every city exactly once. Here we

https://www.geeksforgeeks.org/backtracking-set-7-hamiltonian-cycle/

 know that Hamiltonian Tour exists (because the graph is complete) and in fact, many
 such tours exist, the problem is to find a minimum weight Hamiltonian Cycle.

 For example, consider the graph shown in the figure on the right side. A TSP tour in
 the graph is 1-2-4-3-1. The cost of the tour is 10+25+30+15 which is 80. The problem
 is a famous NP hard problem. There is no polynomial-time know solution for this
 problem. The following are different solutions for the traveling salesman problem.
 Naive Solution:
 1) Consider city 1 as the starting and ending point.
 2) Generate all (n-1)! Permutations of cities.
 3) Calculate the cost of every permutation and keep track of the minimum cost
 permutation.
 4) Return the permutation with minimum cost.

 Let the given set of vertices be {1, 2, 3, 4,….n}. Let us consider 1 as the starting
 and ending point of output. For every other vertex I (other than 1), we find the
 minimum cost path with 1 as the starting point, I as the ending point, and all vertices
 appearing exactly once. Let the cost of this path cost (i), and the cost of the
 corresponding Cycle would cost (i) + dist(i, 1) where dist(i, 1) is the distance from I to
 1. Finally, we return the minimum of all [cost(i) + dist(i, 1)] values.
 Time Complexity: O(n2*2n) where O(n* 2n) are the maximum number of unique
 subproblems/states and O(n) for transition (through for loop as in code) in every state.
 Auxiliary Space: O(n*2n), where n is the number of Nodes/Cities here.

 FLOW-SHOP SCHEDULING
 Flow-shop scheduling is an optimization problem in computer science and

 operations research . It is a variant of optimal job scheduling . In a general
 job-scheduling problem, we are given n jobs J1, J2, ..., Jn of varying processing times,
 which need to be scheduled on m machines with varying processing power, while
 trying to minimize the makespan – the total length of the schedule (that is, when all the
 jobs have finished processing). In the specific variant known as flow-shop scheduling,
 each job contains exactly m operations. The i-th operation of the job must be executed

https://www.geeksforgeeks.org/write-a-c-program-to-print-all-permutations-of-a-given-string/
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operations_Research
https://en.wikipedia.org/wiki/Optimal_job_scheduling
https://en.wikipedia.org/wiki/Makespan

 on the i-th machine. No machine can perform more than one operation simultaneously.
 For each operation of each job, execution time is specified.

 There are m machines and n jobs. Each job contains exactly m operations. The
 i-th operation of the job must be executed on the i-th machine. No machine can
 perform more than one operation simultaneously. For each operation of each job,
 execution time is specified.

 Operations within one job must be performed in the specified order. The first
 operation gets executed on the first machine, then (as the first operation is finished) the
 second operation on the second machine, and so on until the m-th operation. Jobs can
 be executed in any order, however. Problem definition implies that this job order is
 exactly the same for each machine. The problem is to determine the optimal such
 arrangement, i.e. the one with the shortest possible total job execution makespan.
 Algorithm:
 Algorithm JOHNSON_FLOWSHOP(T, Q)
 Q = Φ
 for j = 1 to n do

 t = minimum machine time scanning in booth columns
 if t occurs in column 1 then

 Add Job j to the first empty slot of Q
 else

 Add Job j to last empty slot of Q
 end
 Remove processed job from consideration

 end
 return Q
 Example: [Follow class notes]
 Two-machine case: The two-machine permutation flow-shop case can be solved in
 O(nlogn) time

