UNIT I

Mechanics

1.1 Centre of mass of two particle system

Let us consider a system consisting of two particles of mass m_1 and m_2 . P_1 and P_2 are the position at time t and r_1 and r_2 are the corresponding distances from the origin o. velocity and acceleration

	$\mathbf{v}_1 = \frac{dr_1}{dt}$ and $\mathbf{a}_1 = \frac{dv_1}{dt}$	
	$\mathbf{v}_2 = \frac{dr_2}{dt}$ and $\mathbf{a}_1 = \frac{dv_2}{dt}$	
particle at P_1 has two forces		
(i) A force F_{12} due to the particle a	t P ₁ .	
(ii) A force F_{1e} , external force.		
Resultant force	$F_1 = F_{12} + F_{1e}$	(1)
net force F_2 acting on the particle P_1		
	$F_2 = F_{21} + F_{2e}$	(2)
By Newton's law $F_1 = n$	a_1a_1	(3)
$E_{an}(2) + (4)$	$F_2 = m_2 a_2$	(4)
Eqn(3) + (4)	$F_1 + F_2 = m_1 a_1 + m_2 a_2$	(5)

Sub. Eqn (1) and (2) in (5)

 $F_{12}+F_{1e}+F_{21}+F_{2e}=m_1a_1+m_2a_2\\$ ----- (6)

----- (9)

By Newton's third law

Force F_{12} exerted by particle at P_2 is equal and opposite to F_{21} exerted by particle at P_1

 $F_{12} = -F_{21}$

Eqn (6) \Rightarrow

$$F = F_{1e} + F_{2e} = m_1 a_1 + m_2 a_2 \qquad -----(7)$$

Total mass of the system

 $M = m_1 + m_2$

Net force acting on the system produces and acceleration a_{CM} . celled acceleration of the centre

of mass of the system

$$F = M a_{CM} = m_1 a_1 + m_2 a_2 \qquad ------(8)$$

 R_{CM} = position vector of centre of mass

$$\therefore a_{\rm CM} = \frac{d^2 R_{CM}}{dt^2}$$

Sub (8) in (9)

$$\frac{d^{2}R_{CM}}{dt^{2}} = \frac{1}{M} \left(m_{1} \frac{d^{2}r_{1}}{dt^{2}} + m_{2} \frac{d^{2}r_{2}}{dt^{2}} \right)$$
$$\frac{d^{2}R_{CM}}{dt^{2}} = \frac{1}{M} \frac{d^{2}}{dt^{2}} \left(m_{1}r_{1} + m_{2}r_{2} \right)$$
$$R_{CM} = \frac{1}{M} \left(m_{1}r_{1} + m_{2}r_{2} \right)$$
$$R_{CM} = \frac{m_{1}r_{1} + m_{2}r_{2}}{m_{1} + m_{2}} \quad ----- (10) \quad [:: M = m_{1} + m_{2}]$$

This is the expression foe centre of mass of system consisting of two particle.

Centre of mass of system consisting of n particle

Let m_1, m_2, m_3, \dots mass of the particle with position vectors r_1, r_2, r_3, \dots

$$\mathbf{M} = m_1 + m_2 + m_3 + m_4, \dots$$

Centre of mass

$$\mathbf{R}_{\rm CM} = \frac{m_1 r_1 + m_2 r_2 + m_3 r_3 \dots m_n r_n}{m_1 + m_2 + m_3 \dots m_n}$$

$$\frac{\sum_{i=1}^{n} m_i r_i}{\sum_{i=1}^{n} m_i} = \frac{\sum_{i=1}^{n} m_i r_i}{M}$$

X coordinate and y coordinate of centre of mass

$$\mathbf{x} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 \dots m_n x_n}{m_1 + m_2 + m_3 \dots m_n} \qquad \text{and}$$

$$y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 \dots m_n y_n}{m_1 + m_2 + m_2 \dots m_n}$$

