
 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

Operators

In C programming, operators are used to perform operations on variables and values. Below are

the various types of operators in C:

1. Arithmetic Operators

These operators are used to perform mathematical operations like addition, subtraction,
multiplication, etc.

 Addition (+): Adds two operands.
int a = 5, b = 3;

int result = a + b; // result = 8

 Subtraction (-): Subtracts the second operand from the first.
int a = 5, b = 3;
int result = a - b; // result = 2

 Multiplication (*): Multiplies two operands.
int a = 5, b = 3;
int result = a * b; // result = 15

 Division (/): Divides the first operand by the second.
int a = 6, b = 3;
int result = a / b; // result = 2

 Modulus (%): Returns the remainder when the first operand is divided by the second.

int a = 7, b = 3;
int result = a % b; // result = 1

2. Relational Operators

These operators are used to compare two values and return either true (1) or false (0).

 Equal to (==): Checks if two operands are equal.
int a = 5, b = 5;

int result = (a == b); // result = 1 (true)

 Not equal to (!=): Checks if two operands are not equal.
int a = 5, b = 3;

int result = (a != b); // result = 1 (true)

 Greater than (>): Checks if the first operand is greater than the second.
int a = 5, b = 3;

int result = (a > b); // result = 1 (true)

 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

 Less than (<): Checks if the first operand is less than the second.
int a = 5, b = 3;

int result = (a < b); // result = 0 (false)

 Greater than or equal to (>=): Checks if the first operand is greater than or equal to the
second.

int a = 5, b = 5;
int result = (a >= b); // result = 1 (true)

 Less than or equal to (<=): Checks if the first operand is less than or equal to the

second.
int a = 3, b = 5;
int result = (a <= b); // result = 1 (true)

3. Logical Operators

These operators are used to perform logical operations on expressions.

 Logical AND (&&): Returns true if both operands are true.

int a = 1, b = 1;
int result = (a && b); // result = 1 (true)

 Logical OR (||): Returns true if at least one operand is true.
int a = 1, b = 0;
int result = (a || b); // result = 1 (true)

 Logical NOT (!): Reverses the logical state of its operand.
int a = 1;

int result = !a; // result = 0 (false)

4. Assignment Operators

These operators are used to assign values to variables.

 Simple Assignment (=): Assigns the value of the right operand to the left operand.
int a;
a = 5; // a = 5

 Add and Assign (+=): Adds the right operand to the left operand and assigns the result to
the left operand.
int a = 5;

a += 3; // a = 8

 Subtract and Assign (-=): Subtracts the right operand from the left operand and assigns
the result to the left operand.
int a = 5;

a -= 3; // a = 2

 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

 Multiply and Assign (*=): Multiplies the left operand by the right operand and assigns
the result to the left operand.

int a = 5;
a *= 3; // a = 15

 Divide and Assign (/=): Divides the left operand by the right operand and assigns the
result to the left operand.
int a = 6;
a /= 3; // a = 2

 Modulus and Assign (%=): Takes the modulus of the left operand by the right operand
and assigns the result to the left operand.
int a = 7;

a %= 3; // a = 1

5. Bitwise Operators

These operators perform operations on bits.

 AND (&): Performs bitwise AND.
int a = 5, b = 3;

int result = a & b; // result = 1

 OR (|): Performs bitwise OR.
int a = 5, b = 3;
int result = a | b; // result = 7

 XOR (^): Performs bitwise XOR.
int a = 5, b = 3;
int result = a ^ b; // result = 6

 NOT (~): Performs bitwise NOT.
int a = 5;
int result = ~a; // result = -6

 Shift Left (<<): Shifts bits to the left.
int a = 5;
int result = a << 1; // result = 10

 Shift Right (>>): Shifts bits to the right.
int a = 5;

int result = a >> 1; // result = 2

6. Increment and Decrement Operators

These operators are used to increase or decrease a variable by 1.

 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

 Increment (++): Increases the value of the operand by 1.
int a = 5;

a++; // a = 6

 Decrement (--): Decreases the value of the operand by 1.
int a = 5;

a--; // a = 4

7. Conditional (Ternary) Operator

The conditional operator is a shorthand for if-else statements.

 Syntax: condition ? expr1 : expr2;
o If the condition is true, expr1 is executed; otherwise, expr2 is executed.

int a = 5, b = 3;

int result = (a > b) ? a : b; // result = 5

8. Sizeof Operator

The sizeof operator is used to get the size (in bytes) of a data type or variable.

 Syntax: sizeof(datatype/variable);

int a = 5;

int size = sizeof(a); // size = 4 (on a 32-bit system)

These are the basic operators used in C programming. Each operator serves a different purpose
and helps in performing a wide range of tasks efficiently.

Example Program

#include <stdio.h>

int main() {
 // Variable initialization
 int a = 10, b = 5, result;

 // Arithmetic operators
 result = a + b; // Addition

 printf("a + b = %d\n", result);
 result = a - b; // Subtraction
 printf("a - b = %d\n", result);

 result = a * b; // Multiplication
 printf("a * b = %d\n", result);

 result = a / b; // Division
 printf("a / b = %d\n", result);
 result = a % b; // Modulus

 printf("a %% b = %d\n", result);

 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

 // Relational operators
 printf("a == b: %d\n", a == b); // Equal to

 printf("a != b: %d\n", a != b); // Not equal to
 printf("a > b: %d\n", a > b); // Greater than

 printf("a < b: %d\n", a < b); // Less than
 // Logical operators
 printf("a && b: %d\n", a && b); // AND

 printf("a || b: %d\n", a || b); // OR
 printf("!a: %d\n", !a); // NOT

 // Assignment operators
 a += 5; // Add and assign
 printf("a += 5: %d\n", a);

 a -= 3; // Subtract and assign

 printf("a -= 3: %d\n", a);
 a *= 2; // Multiply and assign
 printf("a *= 2: %d\n", a);

 a /= 2; // Divide and assign
 printf("a /= 2: %d\n", a);

 a %= 3; // Modulus and assign
 printf("a %%= 3: %d\n", a);
 // Bitwise operators

 printf("a & b: %d\n", a & b); // Bitwise AND
 printf("a | b: %d\n", a | b); // Bitwise OR

 printf("a ^ b: %d\n", a ^ b); // Bitwise XOR
 printf("~a: %d\n", ~a); // Bitwise NOT
 printf("a << 1: %d\n", a << 1); // Shift left

 printf("a >> 1: %d\n", a >> 1); // Shift right
 // Increment and Decrement operators

 a++; // Increment
 printf("a++: %d\n", a);
 b--; // Decrement

 printf("b-- : %d\n", b);
 // Conditional (Ternary) operator

 result = (a > b) ? a : b; // Ternary operator
 printf("Ternary operator result: %d\n", result);
 // Sizeof operator

 printf("Size of a: %lu bytes\n", sizeof(a)); // Size of int in bytes
 return 0;

}

Output

a + b = 15
a - b = 5
a * b = 50

 Rohini College of Engineering & Technology

 24CS201 Programming for Problem Solving Using C

a / b = 2
a % b = 0

a == b: 0
a != b: 1

a > b: 1
a < b: 0
a && b: 1

a || b: 1
!a: 0

a += 5: 15
a -= 3: 12
a *= 2: 24

a /= 2: 12
a %= 3: 0

a & b: 0
a | b: 5
a ^ b: 5

~a: -1
a << 1: 0

a >> 1: 0
a++: 1
b--: 4

Ternary operator result: 5
Size of a: 4 bytes

