
5.5  Boolean Forms and Free Boolean Algebra 

 

Boolean Forms 

In Boolean algebra, Boolean forms (or Boolean expressions) are mathematical expressions built using 

Boolean variables and the operations AND (conjunction), OR (disjunction), and NOT (negation). 

These expressions represent logic functions and are used to model logical relationships and 

operations in digital circuits, computer science, and mathematics. 

A Boolean form can be expressed as: 

1. Boolean Variables: These are symbols (often represented as letters like AAA, BBB, XXX, 

etc.) that can take values of either 0 (false) or 1 (true). 

2. Boolean Operations: 

o AND (⋅\cdot⋅ or ∧\land∧): The result is true (1) only if both operands are true. 

o OR (+++ or ∨\lor∨): The result is true (1) if at least one operand is true. 

o NOT (¬\neg¬, ‾\overline{}, or ∼\sim∼): This negates the value of the operand. If the 

operand is 0, the result is 1, and vice versa. 

3. Canonical Forms: Boolean expressions can be written in two important canonical forms: 

o Sum of Products (SOP): A logical OR of ANDed terms. Each term is a product of 

literals (variables or their negations). Example: (A⋅B)+(¬A⋅C)(A \cdot B) + (\neg A 

\cdot C)(A⋅B)+(¬A⋅C). 

o Product of Sums (POS): A logical AND of ORed terms. Example: (A+B)⋅(¬A+C)(A + 

B) \cdot (\neg A + C)(A+B)⋅(¬A+C). 

 

Free Boolean Algebra 

A Free Boolean algebra is a special kind of Boolean algebra that is abstract and not tied to a specific 

set of elements or values. It provides a formal structure for reasoning about Boolean expressions and 

allows the creation of Boolean functions from a set of free variables. 

In more formal terms: 

 A Boolean algebra is a set BBB equipped with two binary operations (AND, OR), a unary 

operation (NOT), and two constants (0 and 1) that satisfy the standard Boolean laws such as: 

o Commutativity: A+B=B+AA + B = B + AA+B=B+A, A⋅B=B⋅AA \cdot B = B \cdot 

AA⋅B=B⋅A 

o Associativity: (A+B)+C=A+(B+C)(A + B) + C = A + (B + C)(A+B)+C=A+(B+C), 

(A⋅B)⋅C=A⋅(B⋅C)(A \cdot B) \cdot C = A \cdot (B \cdot C)(A⋅B)⋅C=A⋅(B⋅C) 

o Distributivity: A⋅(B+C)=(A⋅B)+(A⋅C)A \cdot (B + C) = (A \cdot B) + (A \cdot 

C)A⋅(B+C)=(A⋅B)+(A⋅C), A+(B⋅C)=(A+B)⋅(A+C)A + (B \cdot C) = (A + B) \cdot (A + 

C)A+(B⋅C)=(A+B)⋅(A+C) 

o Identity elements: A+0=AA + 0 = AA+0=A, A⋅1=AA \cdot 1 = AA⋅1=A 



o Complementation: A+¬A=1A + \neg A = 1A+¬A=1, A⋅¬A=0A \cdot \neg A = 

0A⋅¬A=0 

 A Free Boolean algebra is one that is generated from a set of Boolean variables, but it does 

not impose any additional relations or constraints beyond the Boolean operations and identities. 

In simple terms: 

 A Free Boolean algebra has no relations other than the basic Boolean operations and laws, 

meaning it has no predefined values for the elements. 

 The elements of a free Boolean algebra are formal symbols that can be manipulated 

algebraically, but they don’t correspond to specific "truth values" (0 or 1) unless interpreted in 

a particular model. 

 

Construction of a Free Boolean Algebra 

A Free Boolean algebra can be constructed from a set of generators. If we take a set 

X={x1,x2,…,xn}X = \{ x_1, x_2, \dots, x_n \}X={x1,x2,…,xn} of Boolean variables, the free 

Boolean algebra over XXX is the algebra that consists of all Boolean expressions that can be formed 

from XXX using the Boolean operations. 

The elements of a Free Boolean algebra are all possible Boolean combinations of the variables in the 

set. There are no additional relations, and the only rules are those that come from the properties of 

Boolean operations. 

In the free Boolean algebra, every Boolean function can be seen as an algebraic expression formed by 

the free variables. 

Applications and Importance 

 Designing Digital Circuits: Free Boolean algebra is useful in simplifying Boolean 

expressions, which are central to the design of digital circuits (like AND, OR, NOT gates). 

 Theoretical Computer Science: Boolean algebra and its free algebra versions are essential for 

understanding logic, algorithms, and data structures, especially in fields like formal 

verification, logic programming, and automata theory. 

 Optimization: Boolean algebra plays a significant role in simplifying and optimizing logic 

expressions to reduce the number of gates needed in circuit design, which is crucial in 

hardware development. 

Example of a Free Boolean Algebra: 

Let’s say we have a free Boolean algebra generated by two variables AAA and BBB. The elements of 

this algebra would consist of all possible Boolean expressions involving AAA and BBB. Some of the 

expressions could be: 

 



 AAA 

 ¬A\neg A¬A 

 A⋅BA \cdot BA⋅B 

 A+BA + BA+B 

 ¬(A⋅B)\neg (A \cdot B)¬(A⋅B) 

 (A+¬B)⋅(¬A+B)(A + \neg B) \cdot (\neg A + B)(A+¬B)⋅(¬A+B) 

These are all distinct elements in the free Boolean algebra generated by AAA and BBB. None of 

these are tied to a specific truth value until you assign specific values (0 or 1) to AAA and BBB. 

Boolean algebra is a mathematical structure used to work with logical values (usually 0 and 1) and 

operations (AND, OR, NOT). It’s often used in computer science, electrical engineering, and digital 

circuit design. In Boolean algebra, expressions and equations are simplified to form minimal 

representations that are efficient for computation. 

Common Boolean Operations: 

1. AND (Conjunction): 

o Denoted by · (multiplication) or sometimes just by adjacency. 

o Truth table: 

A⋅B=1A \cdot B = 1A⋅B=1 if both A=1A = 1A=1 and B=1B = 1B=1, otherwise 000. 

2. OR (Disjunction): 

o Denoted by + (addition). 

o Truth table: 

A+B=1A + B = 1A+B=1 if either A=1A = 1A=1 or B=1B = 1B=1 (or both), otherwise 

000. 

3. NOT (Negation): 

o Denoted by A‾\overline{A}A or A′A'A′. 

o A‾=1\overline{A} = 1A=1 if A=0A = 0A=0, and A‾=0\overline{A} = 0A=0 if A=1A = 

1A=1. 

 

Basic Boolean Laws and Properties: 

1. Identity Law: 

o A⋅1=AA \cdot 1 = AA⋅1=A 

o A+0=AA + 0 = AA+0=A 

2. Null Law: 

o A⋅0=0A \cdot 0 = 0A⋅0=0 

o A+1=1A + 1 = 1A+1=1 

3. Domination Law: 

o A⋅0=0A \cdot 0 = 0A⋅0=0 

o A+1=1A + 1 = 1A+1=1 

4. Idempotent Law: 

o A⋅A=AA \cdot A = AA⋅A=A 

o A+A=AA + A = AA+A=A 



 

5. Complement Law: 

o A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0 

o A+A‾=1A + \overline{A} = 1A+A=1 

6. Distributive Law: 

o A⋅(B+C)=(A⋅B)+(A⋅C)A \cdot (B + C) = (A \cdot B) + (A \cdot 

C)A⋅(B+C)=(A⋅B)+(A⋅C) 

o A+(B⋅C)=(A+B)⋅(A+C)A + (B \cdot C) = (A + B) \cdot (A + C)A+(B⋅C)=(A+B)⋅(A+C) 

7. De Morgan's Laws: 

o A⋅B‾=A‾+B‾\overline{A \cdot B} = \overline{A} + \overline{B}A⋅B=A+B 

o A+B‾=A‾⋅B‾\overline{A + B} = \overline{A} \cdot \overline{B}A+B=A⋅B 

8. Double Negation: 

o A‾‾=A\overline{\overline{A}} = AA=A 

9. Absorption Law: 

o A⋅(A+B)=AA \cdot (A + B) = AA⋅(A+B)=A 

o A+(A⋅B)=AA + (A \cdot B) = AA+(A⋅B)=A 

Boolean Forms: 

1. Sum of Products (SOP): 

o A Boolean expression in which several terms are OR-ed together, where each term is a 

product (AND) of literals (variables or their negations). 

Example: (A⋅B)+(A′⋅C)(A \cdot B) + (A' \cdot C)(A⋅B)+(A′⋅C) 

2. Product of Sums (POS): 

o A Boolean expression in which several terms are AND-ed together, where each term is a 

sum (OR) of literals. 

Example: (A+B)⋅(A′+C)(A + B) \cdot (A' + C)(A+B)⋅(A′+C) 

Simplification of Boolean Expressions: 

1. Using Boolean laws to reduce expressions to simpler forms. 

2. Truth Tables are sometimes used to verify expressions. 

3. Karnaugh Maps (K-Maps) provide a graphical method to simplify Boolean expressions. 

4.  

Examples and Problems: 

Problem 1: Simplify the Boolean Expression 

Expression: A⋅(A+B)A \cdot (A + B)A⋅(A+B) 

Solution: Using the Absorption Law: A⋅(A+B)=AA \cdot (A + B) = AA⋅(A+B)=A 

 



 

Problem 2: Simplify the Boolean Expression 

Expression: A⋅A‾+A⋅BA \cdot \overline{A} + A \cdot BA⋅A+A⋅B 

Solution: By the Complement Law, A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0, so: 

A⋅A‾+A⋅B=0+A⋅B=A⋅BA \cdot \overline{A} + A \cdot B = 0 + A \cdot B = A \cdot 

BA⋅A+A⋅B=0+A⋅B=A⋅B 

 

Problem 3: Simplify using De Morgan's Law 

Expression: A⋅B‾\overline{A \cdot B}A⋅B 

Solution: By De Morgan’s Law: A⋅B‾=A‾+B‾\overline{A \cdot B} = \overline{A} + 

\overline{B}A⋅B=A+B 

 

Problem 4: Express in Sum of Products (SOP) 

Expression: A+(B⋅C)A + (B \cdot C)A+(B⋅C) 

Solution: The expression is already in SOP form, as it is the sum (OR) of AAA and B⋅CB \cdot 

CB⋅C. 

 

Problem 5: Simplify the Boolean Expression 

Expression: (A+B)⋅(A+C)(A + B) \cdot (A + C)(A+B)⋅(A+C) 

Solution: Using the Distributive Law: (A+B)⋅(A+C)=A+(B⋅C)(A + B) \cdot (A + C) = A + (B \cdot 

C)(A+B)⋅(A+C)=A+(B⋅C) 

 

Problem 6: Construct and Simplify a Boolean Expression using a Truth Table 

Let's create a truth table for the expression: A⋅B‾+A′⋅BA \cdot \overline{B} + A' \cdot BA⋅B+A′⋅B 

A B B‾\overline{B}B 
A⋅B‾A \cdot 

\overline{B}A⋅B 
A′A'A′ 

A′⋅BA' \cdot 

BA′⋅B 

A⋅B‾+A′⋅BA \cdot \overline{B} 

+ A' \cdot BA⋅B+A′⋅B 

0 0 1 0 1 0 0 

0 1 0 0 1 1 1 

1 0 1 1 0 0 1 



A B B‾\overline{B}B 
A⋅B‾A \cdot 

\overline{B}A⋅B 
A′A'A′ 

A′⋅BA' \cdot 

BA′⋅B 

A⋅B‾+A′⋅BA \cdot \overline{B} 

+ A' \cdot BA⋅B+A′⋅B 

1 1 0 0 0 0 0 

From the truth table, the simplified Boolean expression is: A⋅B‾+A′⋅BA \cdot \overline{B} + A' \cdot 

BA⋅B+A′⋅B This is a form of the XOR (exclusive OR) operation. 

 

Problem 7: Simplify the Boolean Expression Using K-map 

Expression: A⋅B+A′⋅B′A \cdot B + A' \cdot B'A⋅B+A′⋅B′ 

We can represent this expression using a K-map for two variables (A, B): 

A \ B 0 1 

0 1 0 

1 0 1 

In the K-map, we have two ones in the cells (0,0) and (1,1). Grouping these together gives: 

A⋅B+A′⋅B′=A⊕BA \cdot B + A' \cdot B' = A \oplus BA⋅B+A′⋅B′=A⊕B This is the XOR (exclusive 

OR) operation. 
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