
5.5 Boolean Forms and Free Boolean Algebra

Boolean Forms

In Boolean algebra, Boolean forms (or Boolean expressions) are mathematical expressions built using

Boolean variables and the operations AND (conjunction), OR (disjunction), and NOT (negation).

These expressions represent logic functions and are used to model logical relationships and

operations in digital circuits, computer science, and mathematics.

A Boolean form can be expressed as:

1. Boolean Variables: These are symbols (often represented as letters like AAA, BBB, XXX,

etc.) that can take values of either 0 (false) or 1 (true).

2. Boolean Operations:

o AND (⋅\cdot⋅ or ∧\land∧): The result is true (1) only if both operands are true.

o OR (+++ or ∨\lor∨): The result is true (1) if at least one operand is true.

o NOT (¬\neg¬, ‾\overline{}, or ∼\sim∼): This negates the value of the operand. If the

operand is 0, the result is 1, and vice versa.

3. Canonical Forms: Boolean expressions can be written in two important canonical forms:

o Sum of Products (SOP): A logical OR of ANDed terms. Each term is a product of

literals (variables or their negations). Example: (A⋅B)+(¬A⋅C)(A \cdot B) + (\neg A

\cdot C)(A⋅B)+(¬A⋅C).

o Product of Sums (POS): A logical AND of ORed terms. Example: (A+B)⋅(¬A+C)(A +

B) \cdot (\neg A + C)(A+B)⋅(¬A+C).

Free Boolean Algebra

A Free Boolean algebra is a special kind of Boolean algebra that is abstract and not tied to a specific

set of elements or values. It provides a formal structure for reasoning about Boolean expressions and

allows the creation of Boolean functions from a set of free variables.

In more formal terms:

 A Boolean algebra is a set BBB equipped with two binary operations (AND, OR), a unary

operation (NOT), and two constants (0 and 1) that satisfy the standard Boolean laws such as:

o Commutativity: A+B=B+AA + B = B + AA+B=B+A, A⋅B=B⋅AA \cdot B = B \cdot

AA⋅B=B⋅A

o Associativity: (A+B)+C=A+(B+C)(A + B) + C = A + (B + C)(A+B)+C=A+(B+C),

(A⋅B)⋅C=A⋅(B⋅C)(A \cdot B) \cdot C = A \cdot (B \cdot C)(A⋅B)⋅C=A⋅(B⋅C)

o Distributivity: A⋅(B+C)=(A⋅B)+(A⋅C)A \cdot (B + C) = (A \cdot B) + (A \cdot

C)A⋅(B+C)=(A⋅B)+(A⋅C), A+(B⋅C)=(A+B)⋅(A+C)A + (B \cdot C) = (A + B) \cdot (A +

C)A+(B⋅C)=(A+B)⋅(A+C)

o Identity elements: A+0=AA + 0 = AA+0=A, A⋅1=AA \cdot 1 = AA⋅1=A

o Complementation: A+¬A=1A + \neg A = 1A+¬A=1, A⋅¬A=0A \cdot \neg A =

0A⋅¬A=0

 A Free Boolean algebra is one that is generated from a set of Boolean variables, but it does

not impose any additional relations or constraints beyond the Boolean operations and identities.

In simple terms:

 A Free Boolean algebra has no relations other than the basic Boolean operations and laws,

meaning it has no predefined values for the elements.

 The elements of a free Boolean algebra are formal symbols that can be manipulated

algebraically, but they don’t correspond to specific "truth values" (0 or 1) unless interpreted in

a particular model.

Construction of a Free Boolean Algebra

A Free Boolean algebra can be constructed from a set of generators. If we take a set

X={x1,x2,…,xn}X = \{ x_1, x_2, \dots, x_n \}X={x1,x2,…,xn} of Boolean variables, the free

Boolean algebra over XXX is the algebra that consists of all Boolean expressions that can be formed

from XXX using the Boolean operations.

The elements of a Free Boolean algebra are all possible Boolean combinations of the variables in the

set. There are no additional relations, and the only rules are those that come from the properties of

Boolean operations.

In the free Boolean algebra, every Boolean function can be seen as an algebraic expression formed by

the free variables.

Applications and Importance

 Designing Digital Circuits: Free Boolean algebra is useful in simplifying Boolean

expressions, which are central to the design of digital circuits (like AND, OR, NOT gates).

 Theoretical Computer Science: Boolean algebra and its free algebra versions are essential for

understanding logic, algorithms, and data structures, especially in fields like formal

verification, logic programming, and automata theory.

 Optimization: Boolean algebra plays a significant role in simplifying and optimizing logic

expressions to reduce the number of gates needed in circuit design, which is crucial in

hardware development.

Example of a Free Boolean Algebra:

Let’s say we have a free Boolean algebra generated by two variables AAA and BBB. The elements of

this algebra would consist of all possible Boolean expressions involving AAA and BBB. Some of the

expressions could be:

 AAA

 ¬A\neg A¬A

 A⋅BA \cdot BA⋅B

 A+BA + BA+B

 ¬(A⋅B)\neg (A \cdot B)¬(A⋅B)

 (A+¬B)⋅(¬A+B)(A + \neg B) \cdot (\neg A + B)(A+¬B)⋅(¬A+B)

These are all distinct elements in the free Boolean algebra generated by AAA and BBB. None of

these are tied to a specific truth value until you assign specific values (0 or 1) to AAA and BBB.

Boolean algebra is a mathematical structure used to work with logical values (usually 0 and 1) and

operations (AND, OR, NOT). It’s often used in computer science, electrical engineering, and digital

circuit design. In Boolean algebra, expressions and equations are simplified to form minimal

representations that are efficient for computation.

Common Boolean Operations:

1. AND (Conjunction):

o Denoted by · (multiplication) or sometimes just by adjacency.

o Truth table:

A⋅B=1A \cdot B = 1A⋅B=1 if both A=1A = 1A=1 and B=1B = 1B=1, otherwise 000.

2. OR (Disjunction):

o Denoted by + (addition).

o Truth table:

A+B=1A + B = 1A+B=1 if either A=1A = 1A=1 or B=1B = 1B=1 (or both), otherwise

000.

3. NOT (Negation):

o Denoted by A‾\overline{A}A or A′A'A′.

o A‾=1\overline{A} = 1A=1 if A=0A = 0A=0, and A‾=0\overline{A} = 0A=0 if A=1A =

1A=1.

Basic Boolean Laws and Properties:

1. Identity Law:

o A⋅1=AA \cdot 1 = AA⋅1=A

o A+0=AA + 0 = AA+0=A

2. Null Law:

o A⋅0=0A \cdot 0 = 0A⋅0=0

o A+1=1A + 1 = 1A+1=1

3. Domination Law:

o A⋅0=0A \cdot 0 = 0A⋅0=0

o A+1=1A + 1 = 1A+1=1

4. Idempotent Law:

o A⋅A=AA \cdot A = AA⋅A=A

o A+A=AA + A = AA+A=A

5. Complement Law:

o A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0

o A+A‾=1A + \overline{A} = 1A+A=1

6. Distributive Law:

o A⋅(B+C)=(A⋅B)+(A⋅C)A \cdot (B + C) = (A \cdot B) + (A \cdot

C)A⋅(B+C)=(A⋅B)+(A⋅C)

o A+(B⋅C)=(A+B)⋅(A+C)A + (B \cdot C) = (A + B) \cdot (A + C)A+(B⋅C)=(A+B)⋅(A+C)

7. De Morgan's Laws:

o A⋅B‾=A‾+B‾\overline{A \cdot B} = \overline{A} + \overline{B}A⋅B=A+B

o A+B‾=A‾⋅B‾\overline{A + B} = \overline{A} \cdot \overline{B}A+B=A⋅B

8. Double Negation:

o A‾‾=A\overline{\overline{A}} = AA=A

9. Absorption Law:

o A⋅(A+B)=AA \cdot (A + B) = AA⋅(A+B)=A

o A+(A⋅B)=AA + (A \cdot B) = AA+(A⋅B)=A

Boolean Forms:

1. Sum of Products (SOP):

o A Boolean expression in which several terms are OR-ed together, where each term is a

product (AND) of literals (variables or their negations).

Example: (A⋅B)+(A′⋅C)(A \cdot B) + (A' \cdot C)(A⋅B)+(A′⋅C)

2. Product of Sums (POS):

o A Boolean expression in which several terms are AND-ed together, where each term is a

sum (OR) of literals.

Example: (A+B)⋅(A′+C)(A + B) \cdot (A' + C)(A+B)⋅(A′+C)

Simplification of Boolean Expressions:

1. Using Boolean laws to reduce expressions to simpler forms.

2. Truth Tables are sometimes used to verify expressions.

3. Karnaugh Maps (K-Maps) provide a graphical method to simplify Boolean expressions.

4.

Examples and Problems:

Problem 1: Simplify the Boolean Expression

Expression: A⋅(A+B)A \cdot (A + B)A⋅(A+B)

Solution: Using the Absorption Law: A⋅(A+B)=AA \cdot (A + B) = AA⋅(A+B)=A

Problem 2: Simplify the Boolean Expression

Expression: A⋅A‾+A⋅BA \cdot \overline{A} + A \cdot BA⋅A+A⋅B

Solution: By the Complement Law, A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0, so:

A⋅A‾+A⋅B=0+A⋅B=A⋅BA \cdot \overline{A} + A \cdot B = 0 + A \cdot B = A \cdot

BA⋅A+A⋅B=0+A⋅B=A⋅B

Problem 3: Simplify using De Morgan's Law

Expression: A⋅B‾\overline{A \cdot B}A⋅B

Solution: By De Morgan’s Law: A⋅B‾=A‾+B‾\overline{A \cdot B} = \overline{A} +

\overline{B}A⋅B=A+B

Problem 4: Express in Sum of Products (SOP)

Expression: A+(B⋅C)A + (B \cdot C)A+(B⋅C)

Solution: The expression is already in SOP form, as it is the sum (OR) of AAA and B⋅CB \cdot

CB⋅C.

Problem 5: Simplify the Boolean Expression

Expression: (A+B)⋅(A+C)(A + B) \cdot (A + C)(A+B)⋅(A+C)

Solution: Using the Distributive Law: (A+B)⋅(A+C)=A+(B⋅C)(A + B) \cdot (A + C) = A + (B \cdot

C)(A+B)⋅(A+C)=A+(B⋅C)

Problem 6: Construct and Simplify a Boolean Expression using a Truth Table

Let's create a truth table for the expression: A⋅B‾+A′⋅BA \cdot \overline{B} + A' \cdot BA⋅B+A′⋅B

A B B‾\overline{B}B
A⋅B‾A \cdot

\overline{B}A⋅B
A′A'A′

A′⋅BA' \cdot

BA′⋅B

A⋅B‾+A′⋅BA \cdot \overline{B}

+ A' \cdot BA⋅B+A′⋅B

0 0 1 0 1 0 0

0 1 0 0 1 1 1

1 0 1 1 0 0 1

A B B‾\overline{B}B
A⋅B‾A \cdot

\overline{B}A⋅B
A′A'A′

A′⋅BA' \cdot

BA′⋅B

A⋅B‾+A′⋅BA \cdot \overline{B}

+ A' \cdot BA⋅B+A′⋅B

1 1 0 0 0 0 0

From the truth table, the simplified Boolean expression is: A⋅B‾+A′⋅BA \cdot \overline{B} + A' \cdot

BA⋅B+A′⋅B This is a form of the XOR (exclusive OR) operation.

Problem 7: Simplify the Boolean Expression Using K-map

Expression: A⋅B+A′⋅B′A \cdot B + A' \cdot B'A⋅B+A′⋅B′

We can represent this expression using a K-map for two variables (A, B):

A \ B 0 1

0 1 0

1 0 1

In the K-map, we have two ones in the cells (0,0) and (1,1). Grouping these together gives:

A⋅B+A′⋅B′=A⊕BA \cdot B + A' \cdot B' = A \oplus BA⋅B+A′⋅B′=A⊕B This is the XOR (exclusive

OR) operation.

	5.5 Boolean Forms and Free Boolean Algebra
	Boolean Forms
	Free Boolean Algebra
	Construction of a Free Boolean Algebra

	Applications and Importance
	Example of a Free Boolean Algebra:

	Common Boolean Operations:
	Basic Boolean Laws and Properties:
	Boolean Forms:
	Simplification of Boolean Expressions:
	Examples and Problems:
	Problem 1: Simplify the Boolean Expression
	Problem 2: Simplify the Boolean Expression
	Problem 3: Simplify using De Morgan's Law
	Problem 4: Express in Sum of Products (SOP)
	Problem 5: Simplify the Boolean Expression
	Problem 6: Construct and Simplify a Boolean Expression using a Truth Table
	Problem 7: Simplify the Boolean Expression Using K-map

