5.4 Boolean Expressions

Introduction to Boolean Expressions:

A **Boolean expression** is a logical statement that can only have one of two possible values: **True (1)** or **False (0)**. These expressions are fundamental in computer science, digital electronics, and logic theory, as they represent the logic behind computer algorithms, circuit design, and data structures.

Basic Boolean Operations

The primary Boolean operations are:

AND Operation (Conjunction)

- Denoted by: $\mathbf{A} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{B}$ or $\mathbf{A} \wedge \mathbf{B}$
- Truth Table:

A B A ^ B

- 000
- $0 \ 1 \ 0$
- $1 \ 0 \ 0$
- 1 1 1
 - Result is **True** (1) only when both operands are True.

OR Operation (Disjunction)

- Denoted by: **A OR B** or **A V B**
- Truth Table:

ABAVB

- 0 0 0
- 0 1 1
- 1 0 1
- 1 1 1
 - Result is **True** (1) if at least one operand is True.

NOT Operation (Negation)

- Denoted by: NOT A or $\neg A$
- Truth Table:

A ¬**A** 0 1

1 0

• The result is the opposite (negation) of the operand.

0

XOR Operation (Exclusive OR)

- Denoted by: **A XOR B** or **A** \bigoplus **B**
- Truth Table:

$\mathbf{A} \mathbf{B} \mathbf{A} \bigoplus \mathbf{B}$

- 0 0 0
- 0 1 1
- $1 \ 0 \ 1$
- 1 1 0
 - XOR is True (1) when exactly one operand is True.

Properties of Boolean Operations

Commutative Properties

- $A \wedge B = B \wedge A$
- $\mathbf{A} \vee \mathbf{B} = \mathbf{B} \vee \mathbf{A}$

Associative Properties

- $(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C} = \mathbf{A} \wedge (\mathbf{B} \wedge \mathbf{C})$
- $(\mathbf{A} \lor \mathbf{B}) \lor \mathbf{C} = \mathbf{A} \lor (\mathbf{B} \lor \mathbf{C})$

Distributive Properties

- $\mathbf{A} \wedge (\mathbf{B} \vee \mathbf{C}) = (\mathbf{A} \wedge \mathbf{B}) \vee (\mathbf{A} \wedge \mathbf{C})$
- $\mathbf{A} \lor (\mathbf{B} \land \mathbf{C}) = (\mathbf{A} \lor \mathbf{B}) \land (\mathbf{A} \lor \mathbf{C})$

Identity Properties

- $A \wedge 1 = A$
- $\mathbf{A} \vee \mathbf{0} = \mathbf{A}$

Domination Properties

- $\mathbf{A} \wedge \mathbf{0} = \mathbf{0}$
- A V 1 = 1

Idempotent Properties

- $A \wedge A = A$
- $\mathbf{A} \vee \mathbf{A} = \mathbf{A}$

Complementary Properties

- $A \land \neg A = 0$
- $A \lor \neg A = 1$

Simplification of Boolean Expressions

Boolean expressions can often be simplified using algebraic rules, allowing for more efficient implementations, especially in digital circuits.

Boolean Algebra Rules

- Redundancy elimination:
 - $\circ \mathbf{A} \wedge (\mathbf{A} \vee \mathbf{B}) = \mathbf{A}$
 - $\circ \quad \mathbf{A} \lor (\mathbf{A} \land \mathbf{B}) = \mathbf{A}$
- Absorption:
 - $\circ \quad \mathbf{A} \lor (\mathbf{A} \land \mathbf{B}) = \mathbf{A}$
 - $\circ \quad \mathbf{A} \land (\mathbf{A} \lor \mathbf{B}) = \mathbf{A}$

Karnaugh Maps (K-Maps)

- A **K-map** is a graphical tool for simplifying Boolean expressions. It helps to visualize the simplification of expressions and reduce the number of terms in the logic function.
- K-map is used to minimize expressions by grouping adjacent cells (with a 1) into larger groups. The goal is to reduce the number of variables.

Boolean Functions and Truth Tables

A **Boolean function** is a function that takes Boolean values as input and produces a Boolean value as output. Boolean functions are represented by truth tables or algebraic expressions.

Example of a Boolean Function:

Let's define a Boolean function **F**(**A**, **B**, **C**) as follows:

The Boolean expression for F(A, B, C) can be derived by observing the rows where the function evaluates to 1:

• $F(A, B, C) = (\neg A \land \neg B \land C) \lor (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (A \land B \land C)$

Converting a Truth Table to a Boolean Expression:

- Sum-of-Products (SOP): When the function is expressed as a sum of products (OR of ANDs).
- Product-of-Sums (POS): When the function is expressed as a product of sums (AND of ORs).

Applications of Boolean Expressions

Boolean expressions are essential in a variety of fields:

Digital Logic Design

Boolean expressions are used to design and simplify logic circuits, such as AND gates, OR gates, NOT gates, NAND gates, and NOR gates.

Computer Programming

• Boolean expressions are used in **conditional statements** (like if-else, switch-case) to control program flow.

Data Structures

• Boolean logic is used in searching algorithms, **binary search trees**, **hashing**, and more.

Artificial Intelligence

• Logical reasoning in AI, including rule-based systems, involves Boolean logic.

Cryptography

• Boolean functions are widely used in the design of **hash functions** and encryption algorithms.

Advanced Topics

Quine–McCluskey Algorithm

• This algorithm is a tabular method used for simplifying Boolean functions. It is more systematic than Karnaugh maps and can handle more variables.

Boolean Networks and Circuit Minimization

• The concept of **Boolean networks** involves modeling circuits as Boolean functions, and techniques like **Quine–McCluskey** are used for minimization.

Switching Theory

• Boolean expressions form the basis of switching theory, which deals with the operation of digital circuits and systems.

Problem 1: Simplify the Boolean expression:

 $A \cdot A^{-} + AA \setminus cdot \setminus overline \{A\} + AA \cdot A + A$

Solution:

Using the **Complement Law**, we know that $A \cdot A^{=}0A \setminus dot = 0A \cdot A=0$, so the expression simplifies to:

0 + A = A0 + A = A0 + A = A

Problem 2: Simplify the Boolean expression:

 $A + A \cdot BA + A \setminus cdot BA + A \cdot B$

Solution:

Using the **Absorption Law**, $A+A \cdot B=AA + A \setminus cdot B = AA+A \cdot B=A$.

Problem 3: Simplify the Boolean expression:

 $(A+B)(A+B^{-})(A+B)(A + \operatorname{verline} \{B\})(A+B)(A+B)$

Solution:

Expanding the expression:

 $(A+B)(A+B^{-})=A\cdot A+A\cdot B^{-}+B\cdot A+B\cdot B^{-}(A+B)(A+ | overline \{B\}) = A | cdot | A+A | cdot | overline \{B\} + B | cdot | A+B | cdot | overline \{B\}(A+B)(A+B)=A\cdot A+A\cdot B+B\cdot A+B\cdot B$

Since $A \cdot A = AA \setminus A = AA \cdot A = A$ and $B \cdot B^{-} = 0B \setminus Cdot \setminus Overline\{B\} = 0B \cdot B = 0$, this simplifies to:

 $A + A \cdot B^{-+} + A \cdot BA + A \cdot cdot \quad overline \{B\} + A \cdot cdot \quad BA + A \cdot B + A \cdot B$

Factor out AAA:

 $A \cdot (1+B^+B)A \setminus (1 + \operatorname{overline} \{B\} + B)A \cdot (1+B+B)$

Since $B^+B=1$ \overline{B} + B = 1B+B=1, we get:

 $A \cdot 1 = AA \setminus cdot 1 = AA \cdot 1 = A$

Thus, the simplified expression is:

AAA

Problem 4: Simplify the Boolean expression:

 $A \cdot B^+ A \cup A \cdot B^+ A \cdot B^+ A$

Solution:

Apply **De Morgan's Law** to $A \cdot B^{-}$ overline { $A \setminus cdot B$ } $A \cdot B$:

 $A \cdot B^{-}=A^{-}+B^{-} \\ overline\{A \setminus cdot B\} = \\ overline\{A\} + \\ overline\{B\}A \cdot B = A + B^{-} \\ Overline\{B\}A + B^{-} \\ Overlin$

Thus, the expression becomes:

 $(A^{+}B^{-})+A(|overline{A} + |overline{B}) + A(A+B)+A$

Using the **Complement Law** $A+A^{-}=1A + overline{A} = 1A+A=1$, the expression simplifies to:

 $1+B=11 + overline\{B\} = 11+B=1$

Thus, the simplified expression is:

Problem 5: Find the Boolean expression for the following truth table:

Solution:

To find the Boolean expression, we write the sum of products for all the rows where the output is 1. These rows are:

- Row 2: $A' \cdot B' \cdot CA' \setminus cdot B' \setminus cdot CA' \cdot B' \cdot C$
- Row 3: $A' \cdot B \cdot C'A' \setminus cdot B \setminus cdot C'A' \cdot B \cdot C'$
- Row 5: $A \cdot B' \cdot C'A \setminus Cdot B' \setminus C'A \cdot B' \cdot C'$
- Row 6: $A \cdot B' \cdot CA \setminus cdot B' \setminus cdot CA \cdot B' \cdot C$
- Row 8: A·B·CA \cdot B \cdot CA·B·C

Thus, the Boolean expression is:

 $A' \cdot B' \cdot C + A' \cdot B \cdot C' + A \cdot B' \cdot C + A \cdot B \cdot CA' \setminus cdot B' \setminus cdot C + A' \setminus cdot B \setminus cdot C' + A \setminus cdot B' \setminus cdot C' + A \setminus cdot B' \setminus cdot CA' \cdot B' \cdot C + A' \cdot B \cdot C' + A \cdot B' \cdot C' + A \cdot B' \cdot C + A \cdot B \cdot C' + A$

Problem 6: Simplify the Boolean expression:

 $A \cdot (B+B^{-})A \setminus (B + \operatorname{overline}\{B\})A \cdot (B+B)$

Solution:

Since $B+B=1B + overline\{B\} = 1B+B=1$ (the **Complement Law**), the expression simplifies to:

 $A \cdot 1 = AA \setminus cdot 1 = AA \cdot 1 = A$

Problem 7: Simplify the Boolean expression:

 $A+A\cdot(B+C)A + A \setminus cdot (B + C)A+A\cdot(B+C)$

Solution:

Using the Absorption Law, $A+A \cdot (B+C)=AA + A \cdot (CD) = AA + A \cdot (B+C) = AA + A + A \cdot (B+C) = AA + A \cdot (B+C)$

Problem 8: Simplify the Boolean expression:

 $A^{+}A \cdot B \setminus A + A \setminus B + A \setminus B$

Solution:

This is a standard example of the **Distributive Law**. It can be simplified as:

 $A^{+}A \cdot B = A^{+}B \setminus A \cdot B = A \cdot B$

Thus, the simplified expression is:

 $A^+B\setminus overline\{A\} + BA+B$