UNIT V — BRANCH AND BOUND AND BACKTRACKING

Backtracking: N-Queens problem - Hamiltonian cycles — Graph coloring — Sum of
subset. Branch and bound: The method — FIFO branch and bound- LC branch and
bound — 0/1 Knapsack problem - Traveling salesman problem.

GRAPH COLORING

Given an undirected graph represented by an adjacency matrix. The graph has n nodes,
labeled from 1 to n. The task is to assign colors to each node in such a way that no two
adjacent nodes have the same color. The challenge is to solve this problem using the

/ / \\
\ /N /
Step-by-step algorithm:

e (reate a recursive function that takes the graph, current index, number of

minimum number of colors.

vertices, and color array.
e [fthe current index is equal to the number of vertices. Print the color
configuration in the color array.
e Assign a color to a vertex from the range (1 to m).
o For every assigned color, check if the configuration is safe,
(i.e. check if the adjacent vertices do not have the same color)
and recursively call the function with the next index and
number of vertices else return false
o If any recursive function returns true then break the loop and
return true

o If no recursive function returns true then return false

SUM OF SUBSET
Given a set[] of non-negative integers and a value sum, the task is to print the
subset of the given set whose sum is equal to the given sum.

Subset sum can also be thought of as a special case of the 0—1 Knapsack
problem. For each item, there are two possibilities:

Include the current element in the subset and recur for the remaining elements
with the remaining Sum.

Exclude the current element from the subset and recur for the remaining
elements.

Finally, if Sum becomes 0 then print the elements of the current subset. The
recursion’s base case would be when no items are left, or the sum becomes negative,
then simply return.

ra v o

EENERE
Subset
| Targetsum =3)
Mot Inelude ano] Include anfv)
S TR s ¥
Arr 1 2 1 Arr 1 2 1
Subset| 2 Subset |I|
TargetSum =1) | TargetSum =2 J
T \\ e I"-r 2 -
— Include arri
Not Include arr{1] Include arr1] "°‘J[‘.‘ e auif] .
il S -
Y e \

ar [1 2z 1 ar [EE 1 ar [0 1 Al z 1]

Subset Subset [2 Subset Subset[1 | 2 | 1

TargetSum = 3 TargetSum = 1) | TargetSum =2 | Targetsum =0)

- N, 4 SPEPES S
o N S 4 .
Not include arrfz] Include ar2] Mot Include ar(2] Include arrf2] Mot Include ar[2] Include ﬂ\”ﬂ]
o \] " i
\ / Vs AN
\
\] s ™y) p S
Fe N e ™ ("
Arr 1 2 1 Arr 1 2 1 Arr 1 2 1 At 1 2 1 Arr 1 2 1 ! Arr 1 2 1
— |

subset || Subset[1 | Subset Subset Subset| 1 ‘ subset[1 [1 |
TargetSum =3 TargetSum = 2 || TargetSum=1 TargetSum = 0 | TargetSum =2 J | Targetsum =1)

Subset Sum Problem

Backtracking Approach to solve Subset Sum Problem

In the naive method to solve a subset sum problem, the algorithm generates all
the possible permutations and then checks for a valid solution one by one. Whenever a
solution satisfies the constraints, mark it as a part of the solution.

In solving the subset sum problem, the backtracking approach is used for
selecting a valid subset. When an item is not valid, we will backtrack to get the
previous subset and add another element to get the solution.

In the worst-case scenario, the backtracking approach may generate all
combinations, however, in general, it performs better than the naive approach.

Follow the below steps to solve subset sum problem using the backtracking approach —
e First, take an empty subset.

e Include the next element, which is at index 0 to the empty set.

e If the subset is equal to the sum value, mark it as a part of the solution.

https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

e If the subset is not a solution and it is less than the sum value, add next element to
the subset until a valid solution is found.

e Now, move to the next element in the set and check for another solution until all
combinations have been tried.

Complexity analysis:

e Time Complexity: O(2n) The above solution may try all subsets of the given
set in the worst case. Therefore the time complexity of the above solution is
exponential.

e Auxiliary Space: O(n) where n is recursion stack space.

