3.4 Partial Orderings

Partial Orderings

A **partial ordering** on a set AAA is a relation $\leq \leq 0$ AAA that is:

- 1. **Reflexive**: For all $a \in Aa \setminus in Aa \in A$, $a \le aa \setminus leq aa \le a$.
- 2. Antisymmetric: For all $a,b\in Aa$, $b \in A$, if $a\leq ba \leq a$ and $b\leq ab \leq a$, then a=ba = ba=b.
- 3. **Transitive**: For all a,b,c \in Aa, b, c \in Aa,b,c \in A, if a \leq ba \leq ba \leq b and b \leq cb \leq cb \leq c, then a \leq ca \leq ca \leq c.

In a partially ordered set (poset), not every pair of elements must be comparable. That is, for some pairs aaa and bbb, neither a \leq ba $\log ba \leq b$ nor b \leq ab $\log ab \leq a$ may hold.

Hasse Diagrams

A Hasse diagram is a graphical representation of a partially ordered set (poset). In this diagram:

- Elements of the set are represented as vertices.
- There is an edge between two elements aaa and bbb if $a \le ba \setminus eq ba \le b$ and there is no element ccc such that a < c < ba <
- The diagram is drawn such that higher elements are placed above lower elements, making the ordering structure visually apparent.

Example:

For the poset $\{a,b,c\}\setminus\{a,b,c\}\$ with relations $a\leq ba \setminus leq ba\leq b$ and $a\leq ca \setminus leq ca\leq c$, the Hasse diagram would have aaa at the bottom, and bbb and ccc above aaa, with edges between aaa and bbb, and between aaa and ccc.

Total Orderings

A **total ordering** (or **linear ordering**) is a special case of a partial ordering where every pair of elements is comparable. That is, for any two elements $a,b\in Aa$, $b \in Aa$, $b \in Aa$, either $a\leq ba \leq b$ or $b\leq ab \leq a$.

Formally, a total ordering is a relation $\leq \leq 0$ a set AAA that satisfies the following properties:

- Reflexive
- Antisymmetric
- Transitive
- Total: For every pair a,b∈Aa, b \in Aa,b∈A, either a≤ba \leq ba≤b or b≤ab \leq ab≤a (i.e., the relation is connected).

Equivalence Relations

An **equivalence relation** on a set AAA is a relation \sim \sim \sim that satisfies the following three properties:

- **Reflexive**: $a \sim aa \ sim aa \sim a$ for all $a \in Aa \ in Aa \in A$.
- **Symmetric**: If $a \sim ba \setminus sim ba \sim b$, then $b \sim ab \setminus sim ab \sim a$.
- **Transitive**: If $a \sim ba \setminus a \to ba \sim b$ and $b \sim cb \setminus a \to cc$, then $a \sim ca \setminus a \to cc$.

Equivalence relations divide a set into **equivalence classes**, which are subsets of AAA where all elements in each class are equivalent to each other.

Common Examples of Partial Orderings

- 1. **Subset Ordering**: For a set SSS, the relation ⊆\subseteq⊆ (subset) is a partial order. If A⊆BA \subseteq BA⊆B, then AAA is related to BBB. This relation is reflexive, antisymmetric, and transitive.
- 2. **Divisibility Ordering**: For the set of natural numbers N\mathbb{N}N, define the relation a≤ba \leq ba≤b if aaa divides bbb. This is a partial order.
- 3. **Task Scheduling**: Consider a set of tasks where task AAA must be completed before task BBB. The "before" relation defines a partial order.

Maximal and Minimal Elements

In a partially ordered set:

- **Maximal Element**: An element aaa is maximal if there is no element bbb such that a<ba < ba
ba
b.
- **Minimal Element**: An element aaa is minimal if there is no element bbb such that b<ab < ab<a.
- Greatest Element: An element ggg is the greatest element if g≥ag \geq ag≥a for all a∈Aa \in Aa∈A.
- Least Element: An element III is the least element if $l \le a \setminus a \le a \in Aa \setminus a \in Aa$.

Lattices

A **lattice** is a poset where every pair of elements has both a **supremum** (least upper bound) and an **infimum** (greatest lower bound). For two elements aaa and bbb in a lattice:

- The **supremum** of aaa and bbb, denoted aVba \vee baVb, is the least element greater than or equal to both aaa and bbb.
- The **infimum** of aaa and bbb, denoted aAba \wedge baAb, is the greatest element less than or equal to both aaa and bbb.

Lattices can be classified as **distributive** or **non-distributive** based on whether the operations $V \vee eV$ and $\Lambda \vee dsribute$ over each other.

Partial orderings are a fundamental concept in mathematics and computer science, used to describe a set with a relation that is reflexive, antisymmetric, and transitive. Partial orderings are important for understanding how elements in a set are related, even when not all elements are comparable.

Let me break down the key properties of a partial ordering:

- 1. Reflexive: Every element is related to itself.
 - $\forall x \in S, x \le x \setminus \text{forall } x \setminus \text{in } S, x \setminus \text{leq } x \forall x \in S, x \le x$
- 2. Antisymmetric: If two elements are related in both directions, they must be equal.
 - $\forall x, y \in S, (x \le y \text{ and } y \le x) \Rightarrow x=y \text{ for all } x, y \in S, (x \le y \text{ and } y \le x) \Rightarrow x=y \text{ for all } x, y \in S, (x \le y \text{ and } y \le x) \Rightarrow x=y$
- 3. **Transitive**: If an element is related to a second, and the second is related to a third, then the first is related to the third.
 - $\label{eq:started} \begin{array}{l} & \forall x,y,z \in S, (x \leq y \text{ and } y \leq z) \Rightarrow x \leq z \\ & \forall x,y,z \in S, (x \leq y \text{ and } y \leq z) \Rightarrow x \leq z \\ \end{array} \\ \left(\begin{array}{l} \forall x,y,z \in S, (x \leq y \text{ and } y \leq z) \Rightarrow x \leq z \\ \forall x,y,z \in S, (x \leq y \text{ and } y \leq z) \Rightarrow x \leq z \end{array} \right) \end{array}$

Partial orderings are often represented using a **Hasse diagram**, where elements are shown as nodes, and edges represent the ordering between elements.

Some Types of Partial Orders

- Total Order: A special case of partial order where every pair of elements is comparable. That is, for any two elements xxx and yyy, either $x \le yx \setminus eq yx \le y$ or $y \le xy \setminus eq xy \le x$.
- Strict Partial Order: A partial order where the reflexive property is not included (i.e., $x \le xx$ \leq $xx \le x$ does not hold).

Now, I will provide a few **problems** involving partial orderings, along with their solutions:

Problem 1: Verify if the Relation is a Partial Order

Let $S = \{1,2,3,4\}S = \{1, 2, 3, 4\}S = \{1,2,3,4\}$, and let the relation $\leq \log \leq on SSS$ be defined by:

 $R = \{(1,1), (1,2), (2,2), (2,3), (3,3), (1,3), (4,4)\} R = \{(1,1), (1,2), (2,2), (2,3), (3,3), (1,3), (4,4)\} \\ \\ \{(1,1), (1,2), (2,2), (2,3), (3,3), (1,3), (4,4)\} \}$

Check if this relation is a partial order.

Solution:

To verify that RRR is a partial order, we need to check the three properties:

- **Reflexivity**: For each element $x \in Sx \setminus in Sx \in S$, we need (x,x)(x, x)(x,x) to be in RRR.
 - For 111, (1,1)(1, 1)(1,1) is in RRR.
 - For 222, (2,2)(2, 2)(2,2) is in RRR.
 - For 333, (3,3)(3, 3)(3,3) is in RRR.
 - For 444, (4,4)(4, 4)(4,4) is in RRR.
 - Thus, RRR is **reflexive**.
- Antisymmetry: We need to check if $(x,y)\in R(x, y) \in R(x,y)\in R$ and $(y,x)\in R(y, x) \in R(y, x) \in R(y,x)\in R$ imply x=yx=yx=y.
 - There are no pairs (x,y)(x, y)(x,y) and (y,x)(y, x)(y,x) in RRR where $x \neq yx \setminus neq yx \Box = y$.
 - Thus, RRR is **antisymmetric**.
- **Transitivity**: We need to check if whenever $(x,y)\in R(x, y) \in R(x,y)\in R$ and $(y,z)\in R(y, z) \in R(y, z) \in R(y, z) \in R(y, z)$ must also be in RRR.
 - From (1,2)(1, 2)(1,2) and (2,3)(2, 3)(2,3), we must have (1,3)(1, 3)(1,3), which is in RRR.
 - All other combinations hold transitivity as well.
 - Thus, RRR is **transitive**.

Since all three properties are satisfied, RRR is a **partial order**.

Problem 2: Find the Hasse Diagram for a Partial Order

Consider the set $S = \{a, b, c, d, e\} S = \{a, b, c, d, e\} S = \{a, b, c, d, e\}$ with the following partial order $\leq |eq \leq :$

 $\leq = \{(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(a,c),(a,d),(b,e),(c,e),(d,e)\} \ |eq = \ (a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (b, e), (c, e), (d, e) \\ | \leq = \{(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(a,c),(a,d),(b,e),(c,e),(d,e)\} \$

Draw the Hasse diagram for this partial order.

Solution:

- 1. Start by plotting the elements: The set $S = \{a, b, c, d, e\}S = \{a, b, c, d\}S = \{a, b,$
- 2. Use the relation to figure out which elements are connected:
 - o a≤ba \leq ba≤b, a≤ca \leq ca≤c, and a≤da \leq da≤d, so aaa is the smallest element in the diagram.
 - o b,c,db, c, db,c,d are all connected to eee, which is the largest element.
 - $_{\circ}$ $\,$ bbb is not comparable to ccc or ddd, so they stand as separate nodes.

3. Simplify the diagram:

 We only draw the edges between elements where the relation is directly defined and remove transitive edges (i.e., if a≤ba \leq ba≤b and b≤eb \leq eb≤e, we don't need to show a≤ea \leq ea≤e).

Here is the **Hasse diagram**:

```
css
Copy code
e
/ | \
/ | \
b c d
|
a
```

Problem 3: Find the Maximum and Minimum Elements

Find the maximum and minimum elements in this partial order.

Solution:

In this partial order, the elements are compared based on divisibility. Let's consider the divisibility relations:

- 111 divides all other elements, so 111 is the **minimum** element.
- 555 is divisible by itself, and no other element divides 555 except 111, so 555 is the **maximum** element.

Thus, the **minimum** element is 111 and the **maximum** element is 555.

Problem 4: Check if the Given Set is Totally Ordered

Consider the set $S=\{2,4,6,8\}S = \{2, 4, 6, 8\}S=\{2,4,6,8\}$ with the relation $\leq \leq defined$ by divisibility (i.e., $x \leq yx \leq y$ if xxx divides yyy).

Check if this set, with this relation, forms a total order.

Solution:

A set forms a **total order** if for every pair of elements $x,y \in Sx$, $y \in S$, either $x \leq yx \leq y x \leq y \leq xy \leq xy \leq x$ holds.

Let's check the divisibility for every pair:

- $2 \le 42 \ge 42 \le 4$, $2 \le 62 \le 6$, and $2 \le 82 \le 8$, since 222 divides all other elements.
- 4≤84 \leq 84≤8, since 444 divides 888.
- 666 does not divide 444, and 444 does not divide 666.

Since 444 and 666 are not comparable, the set is **not totally ordered**.