
 UNIT I – INTRODUCTION 
 Data  structures  -  Abstract  data  types  -  Primitive  data  structures-  –  Performance  analysis  – 
 Space  complexity  –  Time  complexity  –  Asymptotic  notations  –  Performance  measurement 
 –  Array  as  an  abstract  data  type  –  Polynomial  as  an  abstract  data  type  –  Sparse  matrix 
 abstract data type – String abstract data type. 

 Data: 
 A  collection  of  facts,  concepts,  figures,  observations,  occurrences  or  instructions  in  a 

 formalized manner. 
 Information: 

 The  meaning  that  is  currently  assigned  to  data  by  means  of  the  conventions  applied 
 to those data(i.e. processed data) 
 Record: 

 Collection of related fields. 
 Data type: 

 Set of elements that share a common set of properties used to solve a program. 
 Data Structures: 

 Data  Structure  is  the  way  of  organizing,  storing,  and  retrieving  data  and  their 
 relationship with each other. 
 Characteristics of data structures: 

 1.  It depicts the logical representation of data in computer memory. 
 2.  It represents the logical relationship between the various data elements 
 3.  It helps in efficient manipulation of stored data elements. 
 4.  It allows the programs to process the data in an efficient manner. 

 Operations on Data Structures: 
 1.  Traversal 
 2.  Search 
 3.  Insertion 
 4.  Deletion 



 Classification of Data Structures 

 Primary Data Structures/Primitive Data Structures: 
 Primitive  data  structures  include  all  the  fundamental  data  structures  that  can  be 

 directly  manipulated  by  machine-level  instructions.  Some  of  the  common  primitive  data 
 structures include integer, character, real, boolean etc 
 Secondary Data Structures/Non Primitive Data Structures: 

 Non-primitive  data  structures,  refer  to  all  those  data  structures  that  are  derived  from 
 one  or  more  primitive  data  structures.  The  objective  of  creating  non-primitive  data 
 structures is to form sets of homogeneous or heterogeneous data elements. 
 Linear Data Structures: 

 Linear  data  structures  are  data  structures  in  which  all  the  data  elements  are  arranged 
 in  i,  linear  or  sequential  fashion.  Examples  of  data  structures  include  arrays,  stacks,  queues, 
 linked lists, etc. 
 Non Linear Data Structures: 

 In  nonlinear  data  structures,  there  is  a  definite  order  or  sequence  in  which  data 
 elements  are  arranged.  For  instance,  non-linear  data  structures  could  arrange  data  elements 
 in a hierarchical fashion. Examples of non-linear data structures are trees and graphs. 
 Static and dynamic data structure: 

 Static  Ds:  If  a  ds  is  created  using  static  memory  allocation,  ie.  ds  formed  when  the 
 number  of  data  items  are  known  in  advance  ,it  is  known  as  static  data  static  ds  or  fixed  size 
 ds. 



 Dynamic  Ds:  If  the  ds  is  created  using  dynamic  memory  allocation  i.e  ds  formed 
 when  the  number  of  data  items  are  not  known  in  advance  is  known  as  dynamic  ds  or 
 variable size ds. 
 Application of data structures: 

 ●  Data structures are widely applied in the following areas: 
 ●  Compiler design 
 ●  Operating system 
 ●  Statistical analysis package 
 ●  DBMS 
 ●  Numerical analysis 
 ●  Simulation 
 ●  Artificial intelligence 
 ●  Graphics 

 ABSTRACT DATA TYPES (ADTS): 
 An  abstract  Data  type  (ADT)  is  defined  as  a  mathematical  model  with  a  collection  of 

 operations  defined  on  that  model.  Set  of  integers,  together  with  the  operations  of  union, 
 intersection  and  set  difference  form  an  example  of  an  ADT.  An  ADT  consists  of  data 
 together with functions that operate on that data. 
 Advantages/Benefits of ADT: 

 1.  Modularity 
 2.  Reuse 
 3.  Code is easier to understand 
 4.  Implementation  of  ADTs  can  be  changed  without  requiring  changes  to  the  program 

 that uses the ADTs. 

 TIME AND SPACE COMPLEXITY OF ALGORITHM 
 Generally,  there  is  always  more  than  one  way  to  solve  a  problem  in  computer 

 science  with  different  algorithms.  Therefore,  it  is  highly  required  to  use  a  method  to 
 compare the solutions in order to judge which one is more optimal. The method must be: 

 ●  Independent  of  the  machine  and  its  configuration,  on  which  the  algorithm  is  running 
 on. 

 ●  Shows a direct correlation with the number of inputs. 
 ●  Can distinguish two algorithms clearly without ambiguity. 

 Time Complexity 
 The  time  complexity  of  an  algorithm  quantifies  the  amount  of  time  taken  by  an 



 algorithm  to  run  as  a  function  of  the  length  of  the  input.  The  time  to  run  is  a  function  of  the 
 length  of  the  input  and  not  the  actual  execution  time  of  the  machine  on  which  the  algorithm 
 is  running.  In  order  to  calculate  time  complexity  on  an  algorithm,  it  is  assumed  that  a 
 constant  time  c  is  taken  to  execute  one  operation,  and  then  the  total  operations  for  an  input 
 length  on  N  are  calculated.  Consider  an  example  to  understand  the  process  of  calculation: 
 Suppose  a  problem  is  to  find  whether  a  pair  (X,  Y)  exists  in  an  array  A  of  N  elements 
 whose  sum  is  z  .  The  simplest  idea  is  to  consider  every  pair  and  check  if  it  satisfies  the  given 
 condition or not. 
 The pseudo-code is as follows: 
 int a[n]; 
 for(int i = 0;i < n;i++) 

 cin >> a[i]; 
 for(int i = 0;i < n;i++) 

 for(int j = 0;j < n;j++) 
 if(i!=j && a[i]+a[j] == z) 

 return true 
 return false 

 Assume  that  each  of  the  operations  in  the  computer  takes  approximately  constant 
 time  c.  The  number  of  lines  of  code  executed  actually  depends  on  the  value  of  z  .  During 
 analyses  of  the  algorithm,  mostly  the  worst-case  scenario  is  considered,  i.e.,  when  there  is 
 no pair of elements with sum equals z. In the worst case, 

 ●  N  *c operations are required for input. 
 ●  The outer loop i, runs  N  times. 
 ●  For each i, the inner loop j loop runs  n  times. 

 So  total  execution  time  is  N  *c  +  N  *  N  *c  +  c  .  Now  ignore  the  lower  order  terms  since 
 the  lower  order  terms  are  relatively  insignificant  for  large  input,  therefore  only  the  highest 
 order  term  is  taken  (without  constant)  which  is  N  *  N  in  this  case.  Different  notations  are 
 used  to  describe  the  limiting  behavior  of  a  function,  but  since  the  worst  case  is  taken  so 
 big-O notation  will be used to represent the time  complexity. 

 Hence,  the  time  complexity  is  O(  N  2  )  for  the  above  algorithm.  Note  that  the  time 
 complexity  is  based  on  the  number  of  elements  in  array  A  i.e  the  input  length,  so  if  the 
 length of the array will increase the time of execution will also increase. 

 Order  of  growth  is  how  the  time  of  execution  depends  on  the  length  of  the  input.  In 
 the  above  example,  it  is  clearly  evident  that  the  time  of  execution  quadratically  depends  on 
 the length of the array. Order of growth will help to compute the running time with ease. 
 Another Example:  Let’s calculate the time complexity  of the below algorithm: 

https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/


 count = 0 
 for(int i =N;  i > 0; i /= 2) 

 for (int j = 0; j < i; j++) 
 count++; 

 It  seems  like  the  complexity  is  O(N  *  log  N)  .  N  for  the  j′s  loop  and  log(N)  for  i′s  loop.  But 
 it’s wrong. Let’s see why. 
 Think about how many times  count++  will run. 

 ●  When i = N, it will run N times. 
 ●  When i = N / 2, it will run N / 2 times. 
 ●  When i = N / 4, it will run N / 4 times. 
 ●  And so on. 

 The  total  number  of  times  count++  will  run  is  N  +  N/2  +  N/4+…+1=  2  *  N  .  So  the  time 
 complexity  will  be  O(N)  .  Some  general  time  complexities  are  listed  below  with  the  input 
 range for which they are accepted in competitive programming: 

 Input Length  Worst Accepted Time 
 Complexity  Usually type of solutions 

 10 -12  O(N!)  Recursion  and  backtracking 

 15-18  O(2N * N)  Recursion, backtracking, and  bit 
 manipulation 

 18-22  O(2N * N)  Recursion, backtracking, and bit 
 manipulation 

 30-40  O(2N/2 * N)  Meet in the middle,  Divide and 
 Conquer 

 100  O(N4)  Dynamic programming, 
 Constructive 

 400  O(N3)  Dynamic programming, 
 Constructive 

 2K  O(N2* log N) 

 Dynamic programming,  Binary 
 Search,  Sorting,  Divide and 
 Conquer 

http://www.geeksforgeeks.org/recursion/
http://www.geeksforgeeks.org/backtracking-algorithms/
https://www.geeksforgeeks.org/bits-manipulation-important-tactics/
https://www.geeksforgeeks.org/bits-manipulation-important-tactics/
https://www.geeksforgeeks.org/meet-in-the-middle/
http://www.geeksforgeeks.org/divide-and-conquer-introduction/
http://www.geeksforgeeks.org/divide-and-conquer-introduction/
http://www.geeksforgeeks.org/dynamic-programming/
https://www.geeksforgeeks.org/basic/constructive-algorithms/
https://www.geeksforgeeks.org/binary-search/
https://www.geeksforgeeks.org/binary-search/
https://www.geeksforgeeks.org/sorting-algorithms/


 10K  O(N2) 
 Dynamic programming,  Graph, 
 Trees  , 

 1M  O(N* log N)  Sorting, Binary Search, Divide 
 and Conquer 

 100M  O(N), O(log N), O(1)  Constructive,  Mathematical, 
 Greedy Algorithms 

 Space Complexity 
 The  space  complexity  of  an  algorithm  quantifies  the  amount  of  space  taken  by  an 

 algorithm  to  run  as  a  function  of  the  length  of  the  input.  Consider  an  example:  Suppose  a 
 problem to find the  frequency of array elements. 
 The pseudo-code is as follows: 
 int freq[n]; 
 int a[n]; 
 for(int i = 0; i<n; i++) 
 { 

 cin>>a[i]; 
 freq[a[i]]++; 

 } 
 Here  two  arrays  of  length  N,  and  variable  i  are  used  in  the  algorithm  so,  the  total 

 space  used  is  N  *  c  +  N  *  c  +  1  *  c  =  2N  *  c  +  c,  where  c  is  a  unit  space  taken.  For  many 
 inputs, constant c is insignificant, and it can be said that the space complexity is O(N). 

 There  is  also  auxiliary  space,  which  is  different  from  space  complexity.  The  main 
 difference  is  where  space  complexity  quantifies  the  total  space  used  by  the  algorithm, 
 auxiliary  space  quantifies  the  extra  space  that  is  used  in  the  algorithm  apart  from  the  given 
 input.  In  the  above  example,  the  auxiliary  space  is  the  space  used  by  the  freq[]  array 
 because  that  is  not  part  of  the  given  input.  So  total  auxiliary  space  is  N  *  c  +  c  which  is 
 O(N) only. 

 ASYMPTOTIC  ANALYSIS  –  AVERAGE  AND  WORST-CASE 
 ANALYSIS 
 Worst Case Analysis (Usually Done) 

 In  the  worst-case  analysis,  we  calculate  the  upper  bound  on  the  running  time  of  an 
 algorithm.  We  must  know  the  case  that  causes  a  maximum  number  of  operations  to  be 

https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/binary-tree-data-structure/
https://www.geeksforgeeks.org/mathematical-algorithms/
https://www.geeksforgeeks.org/greedy-algorithms-general-structure-and-applications/
https://www.geeksforgeeks.org/counting-frequencies-of-array-elements/


 executed.  For  Linear  Search,  the  worst  case  happens  when  the  element  to  be  searched  (x  in 
 the  above  code)  is  not  present  in  the  array.  When  x  is  not  present,  the  search()  function 
 compares  it  with  all  the  elements  of  arr[]  one  by  one.  Therefore,  the  worst-case  time 
 complexity of linear search would be Θ(n). 

 Average Case Analysis (Sometimes done) 
 In  average  case  analysis,  we  take  all  possible  inputs  and  calculate  computing  time 

 for  all  of  the  inputs.  Sum  all  the  calculated  values  and  divide  the  sum  by  the  total  number  of 
 inputs.  We  must  know  (or  predict)  the  distribution  of  cases.  For  the  linear  search  problem, 
 let  us  assume  that  all  cases  are  uniformly  distributed  (including  the  case  of  x  not  being 
 present  in  the  array).  So  we  sum  all  the  cases  and  divide  the  sum  by  (n+1).  Following  is  the 
 value of average-case time complexity. 

 Average Case Time  = 

 = 

 = Θ(n) 
 Best Case Analysis (Bogus) 

 In  the  best  case  analysis,  we  calculate  the  lower  bound  on  the  running  time  of  an 
 algorithm.  We  must  know  the  case  that  causes  a  minimum  number  of  operations  to  be 
 executed.  In  the  linear  search  problem,  the  best  case  occurs  when  x  is  present  at  the  first 
 location.  The  number  of  operations  in  the  best  case  is  constant(not  dependent  on  n).  So 
 time complexity in the best case would be 

 (1).  Most  of  the  time,  we  do  worst-case  analysis  to  analyze  algorithms.  In  the  worst 
 analysis,  we  guarantee  an  upper  bound  on  the  running  time  of  an  algorithm.  The  average 
 case  analysis  is  not  easy  to  do  in  most  practical  cases  and  it  is  rarely  done.  In  the  average 
 case  analysis,  we  must  know  (or  predict)  the  mathematical  distribution  of  all  possible 
 inputs. 

 The  Best  Case  analysis  is  bogus.  Guaranteeing  a  lower  bound  on  an  algorithm 
 doesn’t  provide  any  information  as  in  the  worst  case,  Algorithms  may  take  years  to  run. 
 For  some  algorithms,  all  the  cases  are  asymptotically  the  same,  i.e.,  there  are  no  worst  and 
 best cases. For example,  Merge Sort  . 

 Merge  Sort  does  Θ(nLogn)  operations  in  all  cases.  Most  of  the  other  sorting 
 algorithms  have  worst  and  best  cases.  For  example,  in  the  typical  implementation  of  Quick 

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
http://en.wikipedia.org/wiki/Merge_sort


 Sort  (where  pivot  is  chosen  as  a  corner  element),  the  worst  occurs  when  the  input  array  is 
 already  sorted  and  the  best  occurs  when  the  pivot  elements  always  divide  the  array  into 
 two  halves.  For  insertion  sort,  the  worst  case  occurs  when  the  array  is  reverse  sorted  and 
 the best case occurs when the array is sorted in the same order as output. 

 ASYMPTOTIC NOTATION 
 The  main  idea  of  asymptotic  analysis  is  to  measure  the  efficiency  of  algorithms  that 

 don’t  depend  on  machine-specific  constants  and  don’t  require  algorithms  to  be 
 implemented  and  time  taken  by  programs  to  be  compared.  Asymptotic  notations  are 
 mathematical  tools  to  represent  the  time  complexity  of  algorithms  for  asymptotic  analysis. 
 The  following  3  asymptotic  notations  are  mostly  used  to  represent  the  time  complexity  of 
 algorithms. 

 1.  Θ notation 
 2.  Big O notation 
 3.  Ω notation 

 Θ Notation: 
 The  theta  notation  bounds  a  function  from  above  and  below,  so  it  defines  exact 

 asymptotic  behavior.  A  simple  way  to  get  the  Theta  notation  of  an  expression  is  to  drop 
 low-order terms and ignore leading constants. 
 For example, consider the following expression.  3n  3  + 6n  2  + 6000  =  Θ(n  3  ) 

 Dropping  lower  order  terms  is  always  fine  because  there  will  always  be  a  number(n) 
 after  which  Θ(n3)  has  higher  values  than  Θ(n2)  irrespective  of  the  constants  involved.  For  a 
 given function g(n), we denote Θ(g(n)) is following set of functions. 

 Θ(g(n))  =  {f(n):  there  exist  positive  constants  c1,  c2  and  n0  such  that  0  <= 
 c1*g(n) <= f(n) <= c2*g(n) for all n >= n0} 

 The  above  definition  means,  if  f(n)  is  theta  of  g(n),  then  the  value  f(n)  is  always 
 between  c1*g(n)  and  c2*g(n)  for  large  values  of  n  (n  >=  n0).  The  definition  of  theta  also 
 requires that f(n) must be non-negative for values of n greater than n0. 

 Big O Notation 
 The  Big  O  notation  defines  an  upper  bound  of  an  algorithm,  it  bounds  a  function 

 only  from  above.  For  example,  consider  the  case  of  Insertion  Sort.  It  takes  linear  time  in  the 
 best  case  and  quadratic  time  in  the  worst  case.  We  can  safely  say  that  the  time  complexity 
 of Insertion sort is O(n^2). Note that O(n^2) also covers linear time. 

 If  we  use  Θ  notation  to  represent  time  complexity  of  Insertion  sort,  we  have  to  use 



 two statements for best and worst cases: 
 1.  The worst-case time complexity of Insertion Sort is Θ(n^2). 
 2.  The best case time complexity of Insertion Sort is Θ(n). 

 The  Big  O  notation  is  useful  when  we  only  have  an  upper  bound  on  the  time 
 complexity  of  an  algorithm.  Many  times  we  easily  find  an  upper  bound  by  simply  looking 
 at the algorithm. 

 O(g(n))  =  {f(n):  there  exist  positive  constants  c  and  n0  such  that  0  <=  f(n)  <= 
 c*g(n) for all n >= n0} 

 Ω Notation 
 Just  as  Big  O  notation  provides  an  asymptotic  upper  bound  on  a  function,  Ω  notation 

 provides  an  asymptotic  lower  bound.  Ω  Notation  can  be  useful  when  we  have  a  lower 
 bound  on  the  time  complexity  of  an  algorithm.  As  discussed  in  the  previous  post,  the  best 
 case  performance  of  an  algorithm  is  generally  not  useful,  the  Omega  notation  is  the  least 
 used notation among all three. 

 For a given function g(n), we denote by Ω(g(n)) the set of functions. 
 Ω  (g(n))  =  {f(n):  there  exist  positive  constants  c  and  n0  such  that  0  <=  c*g(n)  <= 

 f(n) for all n >= n0}. 
 Let  us  consider  the  same  Insertion  sort  example  here.  The  time  complexity  of 

 Insertion  Sort  can  be  written  as  Ω(n),  but  it  is  not  very  useful  information  about  insertion 
 sort, as we are generally interested in worst- case and sometimes in the average case. 

https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/


 Properties of Asymptotic Notations 
 As  we  have  gone  through  the  definition  of  these  three  notations  let’s  now  discuss 

 some important properties of those notations. 

 1.  General Properties: 
 If f(n) is O(g(n)) then a*f(n) is also O(g(n)), where a is a constant. 

 Example:  f(n) = 2n²+5 is O(n²) 
 then 7*f(n) = 7(2n²+5) = 14n²+35 is also O(n²) . 
 Similarly, this property satisfies both Θ and Ω notation. 

 2.  Transitive Properties: 
 If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)) . 
 Example:  if f(n) = n, g(n) = n² and h(n)=n³ 
 n is O(n²) and n² is O(n³) then n is O(n³) 
 Similarly, this property satisfies both Θ and Ω notation. 
 We can say, 



 If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) = Θ(h(n)) . 
 If f(n) is Ω (g(n)) and g(n) is Ω (h(n)) then f(n) = Ω (h(n)) 

 3.  Reflexive Properties: 
 Reflexive properties are always easy to understand after transitive. 
 If  f(n)  is  given  then  f(n)  is  O(f(n)).  Since  MAXIMUM  VALUE  OF  f(n)  will  be  f(n) 
 itself! Hence x = f(n) and y = O(f(n) tie themselves in reflexive relation always. 
 Example:  f(n) = n² ; O(n²) i.e O(f(n)) 
 Similarly, this property satisfies both Θ and Ω notation. 
 We can say that: 
 If f(n) is given then f(n) is Θ(f(n)). If f(n) is given then f(n) is Ω (f(n)). 
 If f(n) is Θ(g(n)) then a*f(n) is also Θ(g(n)) ; where a is a constant. If f(n) is 
 Ω (g(n)) then a*f(n) is also Ω (g(n)) ; where a is a constant. 

 4.  Symmetric Properties: 
 If f(n) is Θ(g(n)) then g(n) is Θ(f(n)) . 
 Example:  f(n) = n² and g(n) = n² then f(n) = Θ(n²)  and g(n) = Θ(n²) 
 This property only satisfies for Θ notation. 

 5.  Transpose Symmetric Properties: 
 If f(n) is O(g(n)) then g(n) is Ω (f(n)). 
 Example:  f(n) = n , g(n) = n² then n is O(n²) and  n² is Ω (n) 
 This property only satisfies O and Ω notations. 

 PROGRAM PERFORMANCE MEASUREMENT 
 Performance  measurement  and  program  evaluation  can  both  help 

 identify  areas  of  programs  that  need  improvement  and  determine  whether  the 
 program  is  achieving  its  goals  or  objectives.  They  serve  different  but 
 complementary functions: 
 ●  Performance  measurement  is  an  ongoing  process  that  monitors  and  reports 

 on  a  program's  progress  and  accomplishments  by  using  pre-selected 
 performance measures. 

 ●  Program  evaluation,  however,  uses  measurement  and  analysis  to  answer 
 specific  questions  about  how  well  a  program  is  achieving  its  outcomes  and 
 why. 

 What is Program Evaluation? 
 Program  evaluations  are  individual  systematic  studies  conducted  to 

 assess  how  well  a  program  is  working  and  why.  EPA  has  used  program 
 evaluation to: 
 ●  Support new and innovative approaches and emerging practices 



 ●  Identify opportunities to improve efficiency and effectiveness 
 ●  Continuously improve existing programs 
 ●  Subsequently, improve human health and the environment 
 What Types of Program Evaluations are there? 
 Program Evaluation:- 

 Program  evaluations  can  assess  the  performance  of  a  program  at  all 
 stages  of  a  program's  development.  The  type  of  program  evaluation  conducted 
 aligns  with  the  program's  maturity  (e.g.,  developmental,  implementation,  or 
 completion)  and  is  driven  by  the  purpose  for  conducting  the  evaluation  and  the 
 questions  that  it  seeks  to  answer.  The  purpose  of  the  program  evaluation 
 determines which type of evaluation is needed. 
 Design Evaluation:- 

 A  design  evaluation  is  conducted  early  in  the  planning  stages  or 
 implementation  of  a  program.  It  helps  to  define  the  scope  of  a  program  or 
 project  and  to  identify  appropriate  goals  and  objectives.  Design  evaluations  can 
 also be used to pre-test ideas and strategies. 
 Process Evaluation:- 

 A  process  evaluation  assesses  whether  a  program  or  process  is 
 implemented  as  designed  or  operating  as  intended  and  identifies  opportunities 
 for  improvement.  Process  evaluations  often  begin  with  an  analysis  of  how  a 
 program  currently  operates.  Process  evaluations  may  also  assess  whether 
 program  activities  and  outputs  conform  to  statutory  and  regulatory 
 requirements, EPA policies, program design or customer expectations. 
 Outcome Evaluations:- 

 Outcome  evaluations  examine  the  results  of  a  program  (intended  or 
 unintended)  to  determine  the  reasons  why  there  are  differences  between  the 
 outcomes  and  the  program's  stated  goals  and  objectives  (e.g.,  why  the  number 
 and  quality  of  permits  issued  exceeded  or  fell  short  of  the  established  goal?). 
 Outcome  evaluations  sometimes  examine  program  processes  and  activities  to 
 better  understand  how  outcomes  are  achieved  and  how  quality  and  productivity 
 could be improved. 
 Impact Evaluation:- 

 An  impact  evaluation  is  a  subset  of  an  outcome  evaluation.  It  assesses 
 the  causal  links  between  program  activities  and  outcomes.  This  is  achieved  by 
 comparing  the  observed  outcomes  with  an  estimate  of  what  would  have 
 happened  if  the  program  had  not  existed  (e.g.,  would  the  water  be  swimmable  if 
 the program had not been instituted). 



 Cost-Effectiveness Evaluation:- 
 Cost-effectiveness  evaluations  identify  program  benefits,  outputs  or 

 outcomes and compare them with the internal and external costs of the program. 
 What is performance measurement? 

 Performance  measurement  is  a  way  to  continuously  monitor  and  report  a 
 program's  progress  and  accomplishments,  using  pre-selected  performance 
 measures.  By  establishing  program  measures,  offices  can  gauge  whether  their 
 program  is  meeting  their  goals  and  objectives.  Performance  measures  help 
 programs understand "what" level of performance is achieved. 
 How do we determine good measures? 

 Measurement  is  essential  to  making  cost-effective  decisions.  We  strive  to 
 meet three key criteria in our measurement work: 
 ●  Is it meaningful? 

 ○  Measurement  should  be  consistent  and  comparable  to  help  sustain 
 learning. 

 ●  Is it credible? 
 ○  Effective measurement should withstand reasonable scrutiny. 

 ●  Is it practical? 
 ○  Measurement  should  be  scaled  to  an  agency's  needs  and  budgetary 

 constraints. 
 How is performance measurement different from program evaluation? 

 A  program  sets  performance  measures  as  a  series  of  goals  to  meet  over 
 time.  Measurement  data  can  be  used  to  identify/flag  areas  of  increasing  or 
 decreasing  performance  that  may  warrant  further  investigation  or  evaluation. 
 Program  evaluations  assess  whether  the  program  is  meeting  those  performance 
 measures but also look at why they are or are not meeting them. 

 For  example,  imagine  you  bought  a  new  car  that  is  supposed  to  get  30 
 miles  per  gallon.  But  say,  you  notice  that  you  are  only  getting  20  miles  per 
 gallon.  That's  a  performance  measurement.  You  looked  at  whether  your  car  was 
 performing  where  it  should  be.  So  what  do  you  do  next?  You  would  take  it  to  a 
 mechanic.  The  mechanic's  analysis  and  recommendations  would  be  the  program 
 evaluation  because  the  mechanic  would  diagnose  why  the  car  is  not  performing 
 as well as it should. 


