
 UNIT V – BRANCH AND BOUND AND BACKTRACKING 
 Backtracking:  N-Queens  problem  -  Hamiltonian  cycles  –  Graph  coloring  –  Sum  of 
 subset.  Branch  and  bound:  The  method  –  FIFO  branch  and  bound-  LC  branch  and 
 bound – 0/1 Knapsack problem - Traveling salesman problem. 

 0/1 KNAPSACK PROBLEM 
 Given  two  arrays  v[]  and  w[]  that  represent  values  and  weights  associated  with  n 

 items  respectively.  Find  out  the  maximum  value  subset(Maximum  Profit)  of  v[]  such  that 
 the sum of the weights of this subset is smaller than or equal to Knapsack capacity W. 

 The  backtracking  based  solution  works  better  than  brute  force  by  ignoring 
 infeasible  solutions.  We  can  do  better  (than  backtracking)  if  we  know  a  bound  on  the  best 
 possible  solution  subtree  rooted  with  every  node.  If  the  best  in  subtree  is  worse  than  the 
 current  best,  we  can  simply  ignore  this  node  and  its  subtrees.  So  we  compute  the  bound 
 (best  solution)  for  every  node  and  compare  the  bound  with  the  current  best  solution 
 before exploring the node. 

 Follow the steps to implement the above idea: 
 ●  Sort  all  items  in  decreasing  order  of  ratio  of  value  per  unit  weight  so  that  an  upper 

 bound can be computed using Greedy Approach. 
 ●  Initialize  maximum  profit,  maxProfit  =  0  ,  create  an  empty  queue,  Q  ,  and  create  a 

 dummy  node  of  decision  tree  and  enqueue  it  to  Q  .  Profit  and  weight  of  dummy  node 
 are  0  . 

 ●  Do the following while  Q  is not empty. 
 ○  Extract an item from  Q  . Let the extracted item be  u  . 
 ○  Compute  profit  of  next  level  node.  If  the  profit  is  more  than  maxProfit  ,  then 

 update  maxProfit  . 



 ○  Compute  bound  of  next  level  node.  If  bound  is  more  than  maxProfit  ,  then  add  the 
 next level node to  Q  . 

 ○  Consider  the  case  when  the  next  level  node  is  not  considered  as  part  of  the 
 solution  and  add  a  node  to  queue  with  level  as  next,  but  weight  and  profit  without 
 considering next level nodes. 

 TRAVELING SALESMAN PROBLEM 
 Given  a  set  of  cities  and  distance  between  every  pair  of  cities,  the  problem  is  to 

 find  the  shortest  possible  tour  that  visits  every  city  exactly  once  and  returns  to  the  starting 
 point. 

 Branch and Bound Solution 
 As  seen  in  the  previous  articles,  in  the  Branch  and  Bound  method,  for  the  current  node  in 
 the  tree,  we  compute  a  bound  on  the  best  possible  solution  that  we  can  get  if  we  down 
 this  node.  If  the  bound  on  the  best  possible  solution  itself  is  worse  than  the  current  best 
 (best computed so far), then we ignore the subtree rooted with the node. 
 Note that the cost through a node includes two costs. 
 1.  Cost  of  reaching  the  node  from  the  root  (When  we  reach  a  node,  we  have  this  cost 

 computed) 
 2.  Cost  of  reaching  an  answer  from  current  node  to  a  leaf  (We  compute  a  bound  on  this 

 cost to decide whether to ignore subtree with this node or not). 
 In  cases  of  a  maximization  problem,  an  upper  bound  tells  us  the  maximum 

 possible  solution  if  we  follow  the  given  node.  For  example  in  0/1  knapsack  we  used  the 
 Greedy approach to find an upper bound  . 

 In  cases  of  a  minimization  problem,  a  lower  bound  tells  us  the  minimum  possible 
 solution  if  we  follow  the  given  node.  For  example,  in  the  Job  Assignment  Problem  ,  we 
 get a lower bound by assigning the least cost job to a worker. 
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 In  branch  and  bound,  the  challenging  part  is  figuring  out  a  way  to  compute  a 
 bound  on  the  best  possible  solution.  Below  is  an  idea  used  to  compute  bounds  for 
 Travelling salesman problems. The cost of any tour can be written as below. 

 Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) 
 where u ? V 

 For  every  vertex  u,  if  we  consider  two  edges  through  it  in  T,  and  sum  their  costs.  The 
 overall  sum  for  all  vertices  would  be  twice  of  cost  of  tour  T  (We  have  considered  every 
 edge  twice.) 
 (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to 

 u) 

 Cost of any tour >=  1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) 
 where u ? V 

 For  example,  consider  the  above  shown  graph.  Below  are  minimum  cost  two  edges 
 adjacent to every node. 

 Node  Least cost edges  Total cost 
 0  (0, 1), (0, 2)  25 
 1  (0, 1), (1, 3)  35 
 2  (0, 2), (2, 3)  45 
 3  (0, 3), (1, 3)  45 

 Thus a lower bound on the cost of any tour = 
 1/2(25 + 35 + 45 + 45) 

 = 75 


