
 UNIT V – BRANCH AND BOUND AND BACKTRACKING
 Backtracking: N-Queens problem - Hamiltonian cycles – Graph coloring – Sum of
 subset. Branch and bound: The method – FIFO branch and bound- LC branch and
 bound – 0/1 Knapsack problem - Traveling salesman problem.

 0/1 KNAPSACK PROBLEM
 Given two arrays v[] and w[] that represent values and weights associated with n

 items respectively. Find out the maximum value subset(Maximum Profit) of v[] such that
 the sum of the weights of this subset is smaller than or equal to Knapsack capacity W.

 The backtracking based solution works better than brute force by ignoring
 infeasible solutions. We can do better (than backtracking) if we know a bound on the best
 possible solution subtree rooted with every node. If the best in subtree is worse than the
 current best, we can simply ignore this node and its subtrees. So we compute the bound
 (best solution) for every node and compare the bound with the current best solution
 before exploring the node.

 Follow the steps to implement the above idea:
 ● Sort all items in decreasing order of ratio of value per unit weight so that an upper

 bound can be computed using Greedy Approach.
 ● Initialize maximum profit, maxProfit = 0 , create an empty queue, Q , and create a

 dummy node of decision tree and enqueue it to Q . Profit and weight of dummy node
 are 0 .

 ● Do the following while Q is not empty.
 ○ Extract an item from Q . Let the extracted item be u .
 ○ Compute profit of next level node. If the profit is more than maxProfit , then

 update maxProfit .

 ○ Compute bound of next level node. If bound is more than maxProfit , then add the
 next level node to Q .

 ○ Consider the case when the next level node is not considered as part of the
 solution and add a node to queue with level as next, but weight and profit without
 considering next level nodes.

 TRAVELING SALESMAN PROBLEM
 Given a set of cities and distance between every pair of cities, the problem is to

 find the shortest possible tour that visits every city exactly once and returns to the starting
 point.

 Branch and Bound Solution
 As seen in the previous articles, in the Branch and Bound method, for the current node in
 the tree, we compute a bound on the best possible solution that we can get if we down
 this node. If the bound on the best possible solution itself is worse than the current best
 (best computed so far), then we ignore the subtree rooted with the node.
 Note that the cost through a node includes two costs.
 1. Cost of reaching the node from the root (When we reach a node, we have this cost

 computed)
 2. Cost of reaching an answer from current node to a leaf (We compute a bound on this

 cost to decide whether to ignore subtree with this node or not).
 In cases of a maximization problem, an upper bound tells us the maximum

 possible solution if we follow the given node. For example in 0/1 knapsack we used the
 Greedy approach to find an upper bound .

 In cases of a minimization problem, a lower bound tells us the minimum possible
 solution if we follow the given node. For example, in the Job Assignment Problem , we
 get a lower bound by assigning the least cost job to a worker.

https://www.geeksforgeeks.org/branch-and-bound-set-2-implementation-of-01-knapsack/
https://www.geeksforgeeks.org/branch-and-bound-set-2-implementation-of-01-knapsack/
https://www.geeksforgeeks.org/branch-bound-set-4-job-assignment-problem/

 In branch and bound, the challenging part is figuring out a way to compute a
 bound on the best possible solution. Below is an idea used to compute bounds for
 Travelling salesman problems. The cost of any tour can be written as below.

 Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T)
 where u ? V

 For every vertex u, if we consider two edges through it in T, and sum their costs. The
 overall sum for all vertices would be twice of cost of tour T (We have considered every
 edge twice.)
 (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to

 u)

 Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u)
 where u ? V

 For example, consider the above shown graph. Below are minimum cost two edges
 adjacent to every node.

 Node Least cost edges Total cost
 0 (0, 1), (0, 2) 25
 1 (0, 1), (1, 3) 35
 2 (0, 2), (2, 3) 45
 3 (0, 3), (1, 3) 45

 Thus a lower bound on the cost of any tour =
 1/2(25 + 35 + 45 + 45)

 = 75

