
1.3   Pigeonhole Principle 

 

Introduction 

The Pigeonhole Principle is a simple, yet powerful concept in combinatorics and 

mathematics. It provides insight into problems that might initially seem 

counterintuitive or difficult to solve. It’s based on an extremely basic idea, but its 

applications can be vast, ranging from number theory to computer science and 

beyond. 

The Pigeonhole Principle  

Statement: 

 If you have more objects than containers and you try to distribute the 

objects into the containers, then at least one container must hold more than 

one object. 

Formal Version: 

 If nnn objects are placed into mmm containers, and n>mn > mn>m, then at 

least one container must hold at least ⌈nm⌉\lceil \frac{n}{m} \rceil⌈mn⌉ 
objects. 

 

Visualizing the Principle 

Imagine you have pigeons and pigeonholes. If you have more pigeons than 

pigeonholes and try to place the pigeons in the holes, at least one pigeonhole will 

contain more than one pigeon. 

Example: 

 If there are 11 pigeons and only 10 pigeonholes, then at least one pigeonhole 

must contain at least 2 pigeons. 

 

 



Generalization and Extended Versions 

 Basic Principle: If n>mn > mn>m, then at least one pigeonhole must 

contain more than one pigeon. 

 Generalized Version: If nnn objects are placed into mmm containers, then 

at least one container contains at least ⌈nm⌉\left\lceil \frac{n}{m} 

\right\rceil⌈mn⌉ objects. 

Applications and Examples 

1. Example 1: Distribution of Balls into Boxes 

Problem: You have 15 balls and 12 boxes. What is the minimum number of 

balls that must be in one box? 

Solution: By the pigeonhole principle, if you place the 15 balls into 12 

boxes, at least one box must contain ⌈1512⌉=2\lceil \frac{15}{12} \rceil = 

2⌈1215⌉=2 balls. Hence, the answer is 2 balls. 

2. Example 2: Birthdays in a Group 

Problem: In a group of 23 people, what is the probability that at least two 

people share the same birthday? 

Solution: We have 365 possible birthdays (ignoring leap years), and 23 

people. Using the pigeonhole principle, since 23 

The Pigeonhole Principle is a simple yet powerful concept in combinatorics. It 

states that if you place more items into fewer containers than the number of items, 

at least one container must hold more than one item. In more formal terms: 

 Pigeonhole Principle: If nnn items are put into mmm containers, and n>mn 

> mn>m, then at least one container must contain more than one item. 

In set theory and combinatorics, this principle is used to prove the existence of 

certain configurations or distributions. Let's look at some problems involving the 

Pigeonhole Principle in set theory. 

 

 



Problem 1: Basic Application 

Problem: In a set of 10 people, there are only 4 distinct hair colors. Prove that at 

least two people must have the same hair color. 

Solution: 

 Let the 10 people be the "items" to be placed in "containers," and the 4 

distinct hair colors be the containers. 

 By the Pigeonhole Principle, if you place 10 people (items) into 4 hair colors 

(containers), and 10 > 4, then at least one hair color (container) must be 

shared by more than one person. 

 Therefore, at least two people must have the same hair color. 

Problem 2: Distributing Elements in Subsets 

Problem: Given a set S={1,2,3,4,5,6,7,8,9,10}S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 

10\}S={1,2,3,4,5,6,7,8,9,10}, how many subsets of size 3 can be chosen such that 

every subset has at least two elements that are divisible by 3? 

Solution: 

1. First, let's identify the elements of SSS that are divisible by 3. These 

elements are {3,6,9}\{3, 6, 9\}{3,6,9}. 

2. The remaining elements of SSS are {1,2,4,5,7,8,10}\{1, 2, 4, 5, 7, 8, 

10\}{1,2,4,5,7,8,10}, which are not divisible by 3. 

3. To ensure that each subset of size 3 contains at least two elements divisible 

by 3, we must select at least two elements from {3,6,9}\{3, 6, 9\}{3,6,9}, 

and the third element can be chosen from the remaining set 

{1,2,4,5,7,8,10}\{1, 2, 4, 5, 7, 8, 10\}{1,2,4,5,7,8,10}. 

4. The number of ways to choose two elements from {3,6,9}\{3, 6, 9\}{3,6,9} 

is (32)=3\binom{3}{2} = 3(23)=3. 

5. After choosing two elements from {3,6,9}\{3, 6, 9\}{3,6,9}, the third 

element must come from the set of 7 elements {1,2,4,5,7,8,10}\{1, 2, 4, 5, 7, 

8, 10\}{1,2,4,5,7,8,10}, and there are 7 possible choices for the third 

element. 

6. Therefore, the total number of subsets is 3×7=213 \times 7 = 213×7=21. 

 

 



 

Problem 3: Generalized Pigeonhole Principle 

Problem: Prove that if nnn items are placed into mmm containers, and n>kmn > 

kmn>km, then at least one container contains more than kkk items. 

Solution: 

 This is a generalization of the basic Pigeonhole Principle. 

 The idea is that if nnn items are distributed among mmm containers, and 

there are more than kmkmkm items (i.e., n>kmn > kmn>km), then there 

must be at least one container with more than kkk items. 

 If each container could hold at most kkk items, the maximum number of 

items would be kmkmkm. Since n>kmn > kmn>km, we can conclude that 

one of the containers must hold more than kkk items. 

Problem 4: Set Partition Problem 

Problem: Let S={1,2,3,4,5,6}S = \{1, 2, 3, 4, 5, 6\}S={1,2,3,4,5,6}. Show that 

there is a way to partition SSS into two subsets such that the sum of the elements in 

each subset is equal. 

Solution: 

This is a classic example of applying the Pigeonhole Principle in a set partition 

context. We want to find a partition of SSS into two subsets such that the sums of 

the elements in each subset are equal. 

 First, compute the sum of all elements in SSS: 

Sum of S=1+2+3+4+5+6=21\text{Sum of } S = 1 + 2 + 3 + 4 + 5 + 6 = 

21Sum of S=1+2+3+4+5+6=21 

 For two subsets to have equal sums, each subset must have a sum of 

212=10.5\frac{21}{2} = 10.5221=10.5, which is not possible because the 

sum must be an integer. Therefore, it's impossible to partition SSS into two 

subsets with equal sums. 

This shows that the Pigeonhole Principle can be used to determine the 

impossibility of certain partitions. 

 



Problem 5: Application to Functions 

Problem: Consider the set A={1,2,3,4}A = \{1, 2, 3, 4\}A={1,2,3,4} and the set 

B={a,b,c}B = \{a, b, c\}B={a,b,c}. Let f:A→Bf: A \to Bf:A→B be a function. 

Prove that if fff is a surjection, then at least one element in AAA must map to the 

same element in BBB. 

Solution: 

 Since fff is a surjection, every element in BBB must be the image of some 

element in AAA. 

 The set AAA has 4 elements, and the set BBB has 3 elements. By the 

Pigeonhole Principle, if you map 4 elements to 3 containers (elements of 

BBB), at least one container (element of BBB) must contain more than one 

element from AAA. 

 Therefore, at least one element in AAA must map to the same element in 

BBB. 

Conclusion 

The Pigeonhole Principle is a useful tool in set theory and combinatorics. By 

applying it to various situations, you can prove the existence of certain 

configurations (e.g., equal sums, overlapping elements) or demonstrate the 

impossibility of certain outcomes. 

                                                   

                                              …………….. 
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