2.3 The Predicate Calculus

The predicate calculus deals with the study of predicates.

Consider the following statement.

"Ram is a boy"

In the above statement, **"is a boy"** is the predicate and the name **"Ram"** is the subject.

If we denote "**is a boy**" by B and subject "**Ram**" by r, then the statement "**Ram is a boy**" can be represented as B(r).

Some examples

1." *x* is a man"

Here, Predicate is "is a man" and it is denoted by M. Subject is "x" and it is denoted by x.

Hence the given statement "x is a man" can be denoted by M(x).

2. "Sam is poor and Ram is intelligent"

The statement **"Sam is poor"** can be represented by **P**(**s**) where P represents predicate **"is poor"** and s represents subject **"Sam"**

The statement "Ram is intelligent" can be represented by I(r) where I represents predicate "is intelligent" and r represents subject "Ram".

Hence the given statement "Sam is poor and Ram is intelligent" can be symbolized as $P(s) \wedge I(r)$.

The Theory of Inference for Predicate Calculus

Universal Specification (UG): $A(y) \Rightarrow (x)A(x)$

Existential Generalization (EG): $A(y) \Rightarrow (\exists x)A(x)$

Universal Specification (US): $(x)A(x) \Rightarrow A(y)$

Existential Specification (ES): $(\exists x)A(x) \Rightarrow A(y)$

Problems:

1.Show that $(x)(H(x) \to M(x)) \land H(s) \Rightarrow M(s)$

Solution:

	OBSERVE	CUTSPREAD
{1}	$1) (x) (H(x) \to M(x))$	Rule P
{1}	$2)H(s) \to M(s)$	Rule US
{3}	3 H(s)	Rule P
{1,3}	4)M(s)	Rule T $(P, P \rightarrow Q \Rightarrow Q)$

6

2. Show that
$$(x)(P(x) \to Q(x)) \land (x)(Q(x) \to R(x)) \Rightarrow (x)(P(x) \to R(x))$$

{1}	$1) (x) (P(x) \to Q(x))$	Rule P
{1}	$2)P(y) \to Q(y) = \mathbf{NGI}$	Rule US
{3}	$3(x)(Q(x) \rightarrow R(x))$	Rule P
{1,3}	$4)Q(y) \to R(y)$	Rule US
{1,3}	5) $P(y) \rightarrow R(y)$	Rule T $(P \to Q, Q \to R \Rightarrow P \to R)$
{1,3}	$6)(x)(P(x) \to R(x))$	Rule UG
		§ % \/5/

Solution:

3. Show that
$$(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$$

Solution:

{1}	1) $(\exists x) (P(x) \land Q(x))$	Rule P
{1}	$2)P(y) \wedge Q(y)$	Rule ES
	UBSERVE OPTIM	AITE OUTSPREAD
{3}	3 P(y)	Rule T $(P \land Q \Rightarrow P)$
{1,3}	4)Q(y)	Rule T $(P \land Q \Rightarrow P)$
{1,3}	$5) (\exists x) P(x)$	Rule EG
{1,3}	$6)(\exists x)Q(x)$	Rule EG
{1}	$(\exists x)P(x) \land (\exists x)Q(x)$	Rule $T(P, Q \Rightarrow P \land Q)$
	•	

4.Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$

Solution:

Solution: We shall use the indirect method of proof. E E P

Assume $\neg((x)P(x) \lor (\exists x)Q(x))$ as an additional premises.

{1}	$1) \neg ((x)P(x) \lor (\exists x)Q(x))$	Assumed Premises
{1}	2) $(\exists x) \neg P(x) \land (x)Q(x)$	Rule T (D'Morgan's law)
{1}	3) $(\exists x) \neg P(x)$	Rule T $(P \land Q \Rightarrow P)$
{1}	4) $(x)Q(x)$	Rule T $(P \land Q \Rightarrow P)$
{1}	5) $\neg P(y)$	Rule ES
{1}	6) $\neg Q(y)$	Rule US
{1}	7) $\neg P(y) \land \neg Q(y)$ BSERVE OPTIMIZE OUTSF	Rule $T(P, Q \Rightarrow P \land Q)$
{1}	8) $\neg (P(y) \lor Q(y))$	Rule T (D'Morgan's law)
{1}	9) $(x)(P(x) \lor Q(x))$	Rule P
{1}	10) $P(y) \lor Q(y)$	Rule US
{1}	11) $(P(y) \lor Q(y)) \land \neg (P(y) \lor Q(y))$	Rule $T(P, Q \Rightarrow P \land Q)$

which is nothing but false value.

5. Show that
$$(x)(P(x) \rightarrow Q(x)) \Rightarrow (x)P(x) \rightarrow (x)Q(x)$$

Solution:

Assume $\neg((x)P(x) \rightarrow (x)Q(x))$ GINEER/NG

{1}	$1) \neg ((x)P(x) \rightarrow (x)Q(x))$	Assumed Premises
{1}	2) $(x)P(x) \land \neg(x)Q(x)$	Rule T $(P \to Q \Rightarrow \neg P \lor Q)$
{1}	3) (x) P(x)	Rule T $(P \land Q \Rightarrow P)$
{1}	$4) \neg ((x)Q(x))$	Rule T $(P \land Q \Rightarrow P)$
{1}	5) $(\exists x) \neg Q(x)$	Rule T(Taking)
{1}	6) P(y)	Rule US
{1}	7) $\neg Q(y)$	Rule ES
{1}	8) $P(y) \land \neg Q(y)$	Rule T $(P, Q \Rightarrow P \land Q)$
{9}	$9) \neg (P(y) \rightarrow Q(y)) \\ OB_{SSDV}$	Rule $T((P \land \neg Q) \Leftrightarrow \neg (P \rightarrow Q))$
{9}	$10) (\exists x) \neg (P(x) \rightarrow Q(x))$	Rule EG
{1,9}	$11) \neg ((x)P(x) \rightarrow Q(x))$	Rule T(Taking ¬)