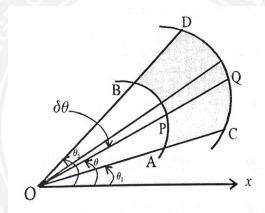
5.2 Double integration in Polar co-ordinates

Consider the integral

$$\int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} f(r, \theta) dr d\theta$$

which is in polar form. This integral is bounded over the region by the straight line $\theta = \theta_1$, $\theta = \theta_2$ and the curves $r = r_1$, $r = r_2$. To evaluate the integral, we first integrate with respect to r between the limits $r = r_1$ and $r = r_2$ (treating θ as a constant). The resulting expression is then integrated with respect to θ between the limits $\theta = \theta_1$ and $\theta = \theta_2$.



Geometrically, AB and CD are the curves $r = f_1(\theta)$ and $r = f_2(\theta)$ bounded by the lines $\theta = \theta_1$ and $\theta = \theta_2$ so that ABCD is the region of integration. PQ is a wedge of angular thickness $\delta\theta$.

Then $\int_{r_1}^{r_2} f(r,\theta) dr$ indicates that the integration is performed along PQ (i.e., r varies, θ constant) and the integration with respect to θ

$$\int_{\theta_1}^{\theta_2} f(r,\theta) d\theta$$

means rotation of the strip PQ from AC to BD

Problems based on double integration in Polar Co-ordinates

Example:

Evaluate
$$\int_0^{\pi/2} \int_0^{\sin\theta} r d\theta dr$$

Given
$$\int_0^{\pi/2} \int_0^{\sin\theta} r d\theta dr$$

$$= \int_0^{\pi/2} \int_0^{\sin\theta} r dr d\theta \quad \text{(Correct form)}$$

$$= \int_0^{\pi/2} \left[\frac{r^2}{2} \right]_0^{\sin\theta} d\theta = \int_0^{\pi/2} \left[\frac{(\sin\theta)^2}{2} - 0 \right] d\theta$$

$$= \frac{1}{2} \int_0^{\pi/2} \sin^2\theta d\theta$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{8}$$

Evaluate $\int_0^{\pi} \int_0^{\sin\theta} r dr d\theta$

Solution:

Given $\int_0^{\pi} \int_0^{\sin\theta} r dr d\theta$

$$= \int_0^{\pi} \left[\frac{r^2}{2} \right]_0^{\sin \theta} d\theta$$

$$= \int_0^{\pi} \frac{\sin^2 \theta}{2} d\theta$$

$$= \frac{1}{2} \int_0^{\pi} \left[\frac{1 - \cos 2\theta}{2} \right] d\theta$$

$$= \frac{1}{4} \left[\theta - \frac{\sin 2\theta}{2} \right]_0^{\pi}$$

$$= \frac{1}{4} \left[(\pi - 0) - (0 - 0) \right]$$

$$= \frac{\pi}{4}$$

Example:

Evaluate $\int_0^{\pi} \int_0^a r dr d\theta$

Given
$$\int_0^{\pi} \int_0^a r dr d\theta$$
$$= \int_0^{\pi} \left[\frac{r^2}{2} \right]_0^a d\theta$$
$$= \int_0^{\pi} \frac{a^2}{2} d\theta$$
$$= \frac{a^2}{2} [\theta]_0^{\pi} = \frac{\pi a^2}{2}$$

Evaluate
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^2 d\theta dr$$

Solution:

Given
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} d\theta dr$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} dr d\theta \qquad \text{(correct form)}$$

$$= \int_{-\pi/2}^{\pi/2} \left[\frac{r^{3}}{3} \right]_{0}^{2\cos\theta} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \left[\frac{(2\cos\theta)^{3}}{3} - 0 \right] d\theta$$

$$= \frac{8}{3} \int_{-\pi/2}^{\pi/2} \cos^{3}\theta d\theta$$

$$= \frac{8}{3} (2) \int_{0}^{\pi/2} \cos^{3}\theta d\theta$$

$$= \frac{16}{3} \left[\frac{2}{3} . 1 \right] = \frac{32}{9}$$

Example:

Evaluate
$$\int_0^{\pi/2} \int_{a(1-\cos\theta)}^a r^2 d\theta dr$$

Given
$$\int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a} r^{2} d\theta dr$$

$$= \int_{0}^{\pi/2} \left[\frac{r^{3}}{3} \right]_{a(1-\cos\theta)}^{a} d\theta$$

$$= \int_{0}^{\pi/2} \left[\frac{a^{3}}{3} - \frac{a^{3}(1-\cos\theta)^{3}}{3} \right] d\theta$$

$$= \frac{a^{3}}{3} \int_{0}^{\pi/2} [1 - (1-\cos\theta)^{3}] d\theta$$

$$= \frac{a^{3}}{3} \int_{0}^{\pi/2} [1 - (1-3\cos\theta + 3\cos^{2}\theta - \cos^{3}\theta)] d\theta$$

$$= \frac{a^{3}}{3} \int_{0}^{\pi/2} [3\cos\theta + 3\cos^{2}\theta - \cos^{3}\theta)] d\theta$$

$$= \frac{a^{3}}{3} \left[(3\sin\theta)_{0}^{\pi/2} - 3\frac{1}{2}\frac{\pi}{2} + \frac{2}{3} \right]$$

$$= \frac{a^{3}}{3} \left[3 - 3\frac{\pi}{2} + \frac{2}{3} \right]$$

$$= \frac{a^3}{3} \left[\frac{36 - 9\pi + 8}{12} \right]$$
$$= \frac{a^3}{36} \left[44 - 9\pi \right]$$

Exercise

Evaluate the following integrals

1.
$$\int_0^{\pi/2} \int_{a\cos\theta}^a r^4 dr d\theta$$
 Ans: $\left(\pi - \frac{16}{15}\right) \frac{a^5}{10}$
2. $\int_0^{2\pi} \int_{a\sin\theta}^a r dr d\theta$ Ans: $\frac{\pi a^2}{4}$
3. $\int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} r dr d\theta$ Ans: $\frac{\pi}{8}$

4.
$$\int_0^{\pi/2} \int_0^{a\cos\theta} r \sqrt{a^2 - r^2} dr d\theta$$
 Ans: $\frac{a^3}{18} (3\pi - 4)$

5.
$$\int_0^{\pi/4} \int_0^{a\sin\theta} \frac{r}{\sqrt{a^2 - r^2}} dr d\theta$$
 Ans: $\frac{a(\pi - 3)}{6}$

6.
$$\int_{b/2}^{b} \int_{0}^{\pi/2} r d\theta dr$$
 Ans: $\frac{3\pi b^2}{16}$

Area enclosed by plane curves (Cartesian coordinates)

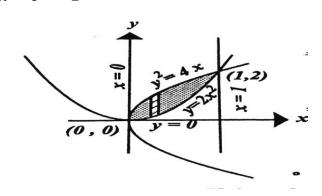
Area =
$$\iint dy dx$$
 (or) Area = $\iint dxdy$

Example:

Find the area enclosed by the curves $y=2x^2$ and $y^2=4x$ Solution:

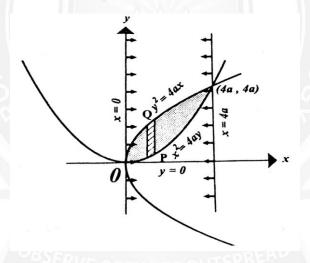
Area =
$$\int \int dy \, dx$$

 $y: 2x^2 \to 2\sqrt{x}$
 $x: 0 \to 1$



Area
$$= \int_0^1 \int_{2x^2}^{2\sqrt{x}} dy \, dx$$
$$= \int_0^1 [y]_{2x^2}^{2\sqrt{x}} dx$$
$$= \int_0^1 (2\sqrt{x - 2x^2}) dx$$
$$= \left[\frac{2x^{3/2}}{3/2} - \frac{2x^3}{3} \right]_0^1$$
$$= \left[\frac{4x^{3/2}}{3} - \frac{2x^3}{3} \right]_0^1$$
$$= \frac{4}{3} - \frac{2}{3} = \frac{2}{3}$$

Find the area between the parabola $y^2 = 4ax$ and $x^2 = 4ay$ Solution:



Area =
$$\int \int dy dx$$

$$y: \frac{x^2}{4a} \to 2\sqrt{ax}$$

$$x: 0 \to 4a$$

$$= \int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$$

$$= \int_0^{4a} [y]_{\frac{x^2}{4a}}^{2\sqrt{ax}} dx$$

$$= \int_0^{4a} (2\sqrt{ax} - \frac{x^2}{4a}) dx$$

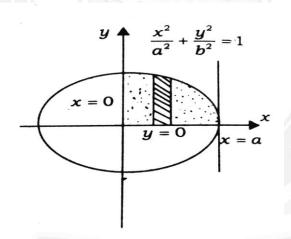
$$= \left[\frac{2\sqrt{a \ x^{3/2}}}{\frac{3}{2}} - \frac{x^3}{12a} \right]_0^{4a}$$

$$= \frac{4}{3}\sqrt{a} (4a)^{3/2} - \frac{(4a)^3}{12a}$$

$$= \frac{32a^2}{3} - \frac{16a^2}{3}$$

$$= \frac{16a^2}{3}$$

Find the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$



Area =4
$$\iint dx dy$$

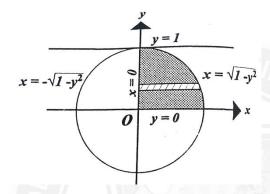
 $x: 0 \to \frac{a}{b} \sqrt{b^2 - y^2}$
 $y: 0 \to ab$

Area =
$$4 \int_0^b \int_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dy \, dx$$

= $4 \int_0^b [x]_0^{\frac{a}{b}\sqrt{b^2 - y^2}} dy$
= $4 \int_0^b \left[\frac{a}{b} \sqrt{b^2 - y^2} - 0 \right] dy$
= $\frac{4a}{b} \left[\frac{b^2}{2} sin^{-1} \left(\frac{y}{b} \right) + \frac{y}{2} \sqrt{b^2 - y^2} \right]_0^b$
= $\frac{4a}{b} \left[\left(\frac{b^2}{2} \frac{\pi}{2} + 0 \right) - 0 \right]$

$$= \frac{4ab}{b} \frac{b^2}{2} \frac{\pi}{2}$$
$$= \pi ab$$

Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = 1$ Solution:



$$x: 0 \to \sqrt{1 - y^2}$$

$$y: 0 \to 1$$

$$\iint xy \, dx \, dy = \int_0^1 \int_0^{\sqrt{1 - y^2}} xy \, dx \, dy$$

$$= \int_0^1 \left[\frac{x^2 y}{2} \right]_0^{\sqrt{1 - y^2}} \, dy$$

$$= \frac{1}{2} \int_0^1 (\sqrt{1 - y^2})^2 y \, dy$$

$$= \frac{1}{2} \int_0^1 (1 - y^2) y \, dy$$

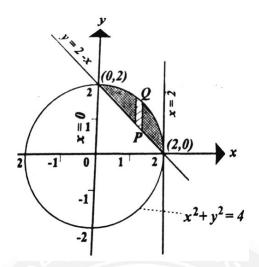
$$= \frac{1}{2} \int_0^1 (y - y^3) \, dy$$

$$= \frac{1}{2} \left[\frac{y^2}{2} - \frac{y^4}{4} \right]_0^1$$

$$= \frac{1}{2} \left[\frac{1}{2} - \frac{1}{4} \right] = \frac{1}{2} \left[\frac{1}{4} \right] = \frac{1}{8}$$

Example:

Find the smaller of the area bounded by y = 2 - x and $x^2 + y^2 = 4$ Solution:



Area= ∬ dy dx

$$y: 2-x \to \sqrt{4-x^2}$$

$$x: 0 \rightarrow 2$$

$$= \int_0^2 \int_{2-x}^{\sqrt{4-x^2}} dy \, dx$$

$$= \int_0^2 [y]_{2-x}^{\sqrt{4-x^2}} dx$$

$$= \int_0^2 [\sqrt{4-x^2} - (2-x)] dx$$

$$= \left[\frac{x}{2} \sqrt{4-x^2} + \frac{2^2}{2} \sin^{-1} \left(\frac{x}{2} \right) - 2x + \frac{x^2}{2} \right]_0^2$$

$$= 0 + \frac{4}{2} \left(\frac{\pi}{2} \right) - 4 + \frac{4^2}{2}$$

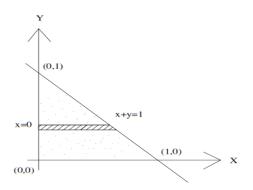
$$= \pi - 2 \text{ square unit}$$

Example:

Evaluate $\iint xy \, dxdy$ over the positive quadrant for which $x + y \le 1$ Solution:

$$x: 0 \rightarrow 1 - y$$

$$y: 0 \rightarrow 1$$



$$\iint xy \, dxdy = \int_0^1 \int_0^{1-y} xy \, dx \, dy$$

$$= \int_0^1 \left(\frac{x^2 y}{2}\right)_0^{1-y} dy$$

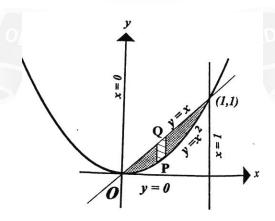
$$= \int_0^1 \frac{1-y^2 y}{2} \, dy$$

$$= \frac{1}{2} \int_0^1 (y^2 - 2y^2 + y^3) dy$$

$$= \frac{1}{2} \left[\frac{y^2}{2} - \frac{2y^3}{3} + \frac{y^4}{4} \right]_0^1$$

$$= \frac{1}{2} \left[\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right] = \frac{1}{2} \left[\frac{16-8+3}{12} \right] = \frac{1}{24}$$

Using double integral find the area bounded by y = x and $y = x^2$ Solution



Area =
$$\iint dy dx$$

 $y: x^2 \to x$
 $x: 0 \to 1$

$$= \int_0^1 \int_{x^2}^x dy \, dx$$

$$= \int_0^1 [y]_{x^2}^x \, dx$$

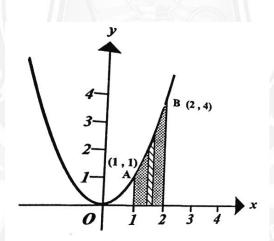
$$= \int_0^1 (x - x^2) dx$$

$$= \left[\frac{x^2}{2} + \frac{x^3}{3} \right]_0^1$$

$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

Evaluate $\iint (x^2 + y^2) dxdy$ where A is area bounded by the curves $x^2 = y$, x = 1 and x = 2 about x axis

$$y: 0 \to x^2$$
$$x: 1 \to 2$$



$$\iint (x^2 + y^2) dxdy = \int_1^2 \int_0^{x^2} (x^2 + y^2) dydx$$

$$= \int_1^2 \left[x^2 y + \frac{y^3}{3} \right]_0^{x^2} dx$$

$$= \int_1^2 (x^4 + \frac{x^6}{3}) dx$$

$$= \left[\frac{x^5}{5} + \frac{x^7}{21} \right]_1^2$$

$$= \left[\frac{2^5}{5} + \frac{2^7}{21} - \frac{1}{5} - \frac{1}{21} \right]$$

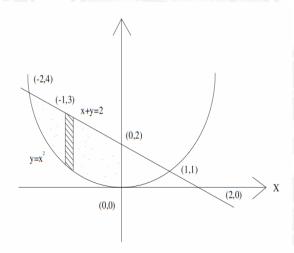
$$=\frac{1286}{105}$$

Find the area enclosed by the curves $y = x^2$ and x + y - 2 = 0Solution:

Given
$$y=x^2$$
 and $x + y - 2 = 0$

X	0	1	2	-1	-2
Y=2-x	2	1EN	0	3 7//	4

X	0	1	-1	2	-2
$y = x^2$	0	1	1	4	4



Area =
$$\iint dy dx$$

$$y: x^{2} \to 2 - x$$

$$x: -2 \to 1$$

$$\int_{-2}^{1} \int_{x^{2}}^{2-x} dy \, dx = \int_{-2}^{1} [y]_{x^{2}}^{2-x} \, dx$$

$$= \int_{-2}^{1} (2 - x - x^{2}) dx$$

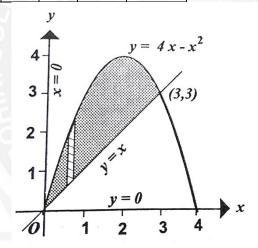
$$= \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-2}^{1}$$

$$= \left[2 - \frac{1}{2} - \frac{1}{3}\right] - \left[-4 - \frac{4}{2} + \frac{8}{3}\right] = \frac{27}{6}$$

Find by double integration the area lying between the parabola $y=4x-x^2$ and the line y=x

Given
$$y = 4x - x^2$$
 and $y = x$

X	0	1	2	-1	-2	3
<i>y</i>	0	3	4	-5	-12	3
$=4x-x^2$			4//			*



$$Area = \iint dy dx$$

$$y: x \to 4x - x^2$$

$$x: 0 \rightarrow 3$$

$$\int_0^3 \int_x^{4x - x^2} dy \, dx = \int_0^3 [y]_x^{4x - x^2} \, dx$$

$$= \int_0^3 (4x - x^2 - x) \, dx$$

$$= \int_0^3 (3x - x^2) \, dx$$

$$= \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_0^3 = \frac{27}{2} - \frac{27}{3} = \frac{9}{2}$$

Exercise:

1. Evaluate $\iint x dy dx$ over the region between the parabola $y^2 = x$ and the lines x + y = x

2,
$$x = 0$$
 and $x = 1$ Ans: $\frac{4}{15}$

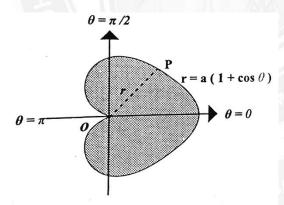
- 2. Evaluate $\iint y^2 dxdy$ over the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Ans: $\frac{\pi a b^3}{4}$
- 3. Find the area between the curve $y^2 = 4 x$ and the line $y^2 = x$ Ans: $\frac{16\sqrt{2}}{3}$

Area Enclosed by Plane Curves [Polar co-ordinates]

Problems Based on Area Enclosed by Plane Curves Polar Coordinates

Example:

Find using double integral, the area of the cardioid $\, r = a(1 + cos\theta) \,$ Solution:



The curve is symmetrical about the initial line

$$\theta$$
 varies from $: 0 \to \pi$

r varies from:
$$0 \rightarrow a(1 + \cos\theta)$$

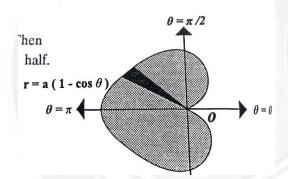
Hence, required area =
$$2\int_{\theta=0}^{\theta=\pi}\int_{r=0}^{r=a(1+cos\theta)} rdrd\theta$$

$$\begin{split} &=2\int_0^\pi \left[\frac{r^2}{2}\right]_{r=0}^{r=a(1+\cos\theta)} \ d\theta &= \int_0^\pi [r^2]_{r=0}^{r=a(1+\cos\theta)} \ d\theta \\ &= \int_0^\pi [a^2(1+\cos\theta)^2 - 0] d\theta = a^2\int_0^\pi [1+\cos^2\theta + 2\cos\theta] d\theta \end{split}$$

$$\begin{split} &=a^2 \int_0^\pi \left[1+\frac{1+\cos 2\theta}{2}+2\cos \theta\right] d\theta \\ &=\frac{a^2}{2} \int_0^\pi [2+1+\cos 2\theta+4\cos \theta] \, d\theta = \frac{a^2}{2} \int_0^\pi [3+\cos 2\theta+4\cos \theta] \, d\theta \\ &=\frac{a^2}{2} \left[3\theta+\frac{\sin 2\theta}{2}+4\sin \theta\right]_0^\pi = \frac{a^2}{2} \left[(3\pi+\theta+\theta)-(\theta+\theta+\theta)\right] \\ &=\frac{3}{2} a^2 \pi \quad \text{square units.} \end{split}$$

Find the area of the cardioid $r = a(1 - cos\theta)$

Solution:



The curve is symmetrical about the initial line.

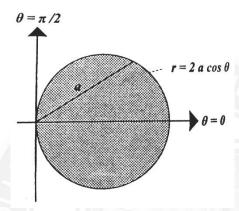
 θ varies from $: 0 \to \pi$

r varies from: $0 \rightarrow a(1 - \cos\theta)$

Hence, required area =
$$2\int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=a(1-\cos\theta)} r dr d\theta$$

= $2\int_{0}^{\pi} \left[\frac{r^{2}}{2}\right]_{r=0}^{r=a(1-\cos\theta)} d\theta = \int_{0}^{\pi} [r^{2}]_{r=0}^{r=a(1-\cos\theta)} d\theta$
= $\int_{0}^{\pi} [a^{2}(1-\cos\theta)^{2}-0] d\theta = a^{2}\int_{0}^{\pi} [1+\cos^{2}\theta-2\cos\theta] d\theta$
= $a^{2}\int_{0}^{\pi} \left[1+\frac{1+\cos^{2}\theta}{2}-2\cos\theta\right] d\theta$
= $\frac{a^{2}}{2}\int_{0}^{\pi} [2+1+\cos^{2}\theta-4\cos\theta] d\theta = \frac{a^{2}}{2}\int_{0}^{\pi} [3+\cos^{2}\theta-4\cos\theta] d\theta$
= $\frac{a^{2}}{2}\left[3\theta+\frac{\sin^{2}\theta}{2}-4\sin\theta\right]_{0}^{\pi} = \frac{a^{2}}{2}[(3\pi+\theta-\theta)-(\theta+\theta-\theta)]$
= $\frac{3}{2}a^{2}\pi$ square units.

Find the area of a circle of radius 'a' by double integration in polar co-ordinates. Solution:



The equation of circle with pole on the circle and diameter through the point as initial line is $r=2acos\theta$

Area = $2 \times \text{upper area}$

$$= 2 \int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=0}^{r=2a\cos\theta} r dr d\theta$$

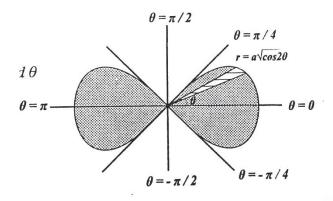
$$= \int_{0}^{\frac{\pi}{2}} [r^2]_{0}^{2a\cos\theta} d\theta$$

$$= 4a^2 \int_{0}^{\frac{\pi}{2}} \cos^2\theta d\theta = 4a^2 \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi a^2 \text{ square units.}$$

Example:

Find the area of the lemniscates $r^2=a^2cos2\theta\,$ by double integration. [A.U R-08]

Area =
$$\iint r dr d\theta$$



Area = $4 \times$ area of upper half of one loop.

$$= 4 \int_0^{\frac{\pi}{4}} \int_0^{a\sqrt{\cos 2\theta}} r dr d\theta$$

$$= 2 \int_0^{\frac{\pi}{4}} (r^2)_0^{a\sqrt{\cos 2\theta}} d\theta$$

$$= 2a^2 \int_0^{\frac{\pi}{4}} \cos 2\theta d\theta$$

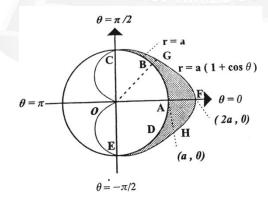
$$= 2a^2 \left(\frac{\sin 2\theta}{2}\right)_0^{\frac{\pi}{4}}$$

$$= a^2 \text{ square units.}$$

Example:

Find the area that lies inside the cardioid $r = a(1 + \cos\theta)$ and outside the circle r = a, by double integration. [A.U 2014]

Solution:



Both the curves are symmetric about the initial line.

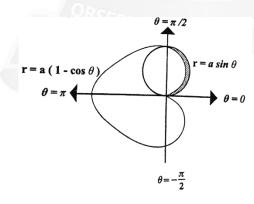
Hence, the required area =
$$2\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=a}^{r=a(1+cos\theta)} r dr d\theta$$

= $2\int_{0}^{\frac{\pi}{2}} \left[\frac{r^{2}}{2}\right]_{r=a}^{r=a(1+cos\theta)} d\theta$
= $2\int_{0}^{\frac{\pi}{2}} \left[\frac{a^{2}(1+cos\theta)^{2}}{2} - \frac{a^{2}}{2}\right] d\theta$
= $a^{2}\int_{0}^{\frac{\pi}{2}} \left[1+cos^{2}\theta + 2cos\theta - 1\right] d\theta$
= $a^{2}\int_{0}^{\frac{\pi}{2}} \left[\frac{1+cos^{2}\theta}{2} + 2cos\theta\right] d\theta$
= $\frac{a^{2}}{2}\int_{0}^{\frac{\pi}{2}} \left[1+cos^{2}\theta + 4cos\theta\right] d\theta$
= $\frac{a^{2}}{2}\left[\theta + \frac{sin^{2}\theta}{2} + 4sin\theta\right]_{0}^{\frac{\pi}{2}}$
= $\frac{a^{2}}{2}\left[\left(\frac{\pi}{2} + 0 + 4\right) - (0 + 0 + 0)\right]$
= $\frac{a^{2}}{4}(\pi + 8)$ square units.

Find the area inside the circle $\, r = a sin \theta \,$ and outside the cardioid $r = a (1 - cos \theta)$

[A.U.Jan.2009]

Solution:



From the figure, we get

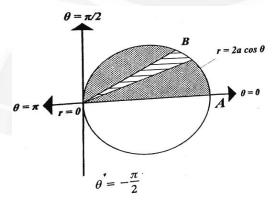
 θ varies from $: 0 \to \frac{\pi}{2}$

r varies from: $a(1 - \cos\theta) \rightarrow a\sin\theta$

The required area =
$$\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=a(1-\cos\theta)}^{r=a\sin\theta} r dr d\theta$$
=
$$\int_{0}^{\frac{\pi}{2}} \left[\frac{r^{2}}{2} \right]_{r=a(1-\cos\theta)}^{r=a\sin\theta} d\theta$$
=
$$\int_{0}^{\frac{\pi}{2}} \left[\frac{a^{2}\sin^{2}\theta}{2} - \frac{a^{2}(1-\cos\theta)^{2}}{2} \right] d\theta$$
=
$$\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}} [\sin^{2}\theta - 1 - \cos^{2}\theta + 2\cos\theta] d\theta$$
=
$$\frac{a^{2}}{2} \left[\int_{0}^{\frac{\pi}{2}} \sin^{2}\theta d\theta - \int_{0}^{\frac{\pi}{2}} d\theta - \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta d\theta + 2 \int_{0}^{\frac{\pi}{2}} \cos\theta d\theta \right]$$
=
$$\frac{a^{2}}{2} \left[-[\theta]_{0}^{\frac{\pi}{2}} + 2[\sin\theta]_{0}^{\frac{\pi}{2}} \right] \qquad \therefore \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta d\theta$$
=
$$\frac{a^{2}}{2} \left[-(\frac{\pi}{2} - 0) + 2(1 - 0) \right] \qquad = \frac{1}{2} \frac{\pi}{2}$$
=
$$\frac{a^{2}}{2} \left[2 - \frac{\pi}{2} \right]$$
=
$$\frac{a^{2}}{4} (4 - \pi) \text{ square units.}$$

Evaluate $\int_R \int r^2 \sin\theta \ dr d\theta$ where R is the semi circle $\ r=2a\cos\theta$ above the initial line.

Solution:



 θ varies from $: 0 \to \frac{\pi}{2}$

r varies from: $0 \rightarrow 2acos\theta$

Let
$$I = \int \int r^2 \sin\theta \, dr d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\cos\theta} (r^{2}\sin\theta) dr d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{r^{3}}{3} \sin\theta \right]_{r=0}^{r=2a\cos\theta} d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{8a^{3}}{3} \cos^{3}\theta \sin\theta - 0 \right] d\theta$$

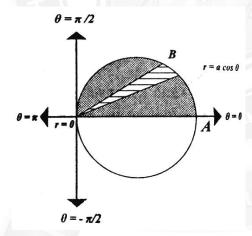
$$= \int_{0}^{\frac{\pi}{2}} \frac{8a^{3}}{3} \cos^{3}\theta \sin\theta d\theta$$

$$= \frac{8a^{3}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\theta \sin\theta d\theta$$

$$= \frac{8a^{3}}{3} \int_{0}^{\frac{\pi}{2}} \cos^{3}\theta d(\cos\theta) = \frac{8a^{3}}{3} \left[\frac{\cos^{4}\theta}{4} \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{8a^{3}}{3} \left[0 - \frac{1}{4} \right] = \frac{-2a^{3}}{3}$$

Evaluate $\int \int r \sqrt{a^2 - r^2} \ dr d\theta$ over the upper half of the circle $\ r = acos\theta$. Solution:



$$\theta$$
 varies from $: 0 \to \frac{\pi}{2}$

 $r \ varies \ from: 0 \rightarrow acos\theta$

Let
$$I = \int \int r\sqrt{a^2 - r^2} dr d\theta$$

= $\int_0^{\frac{\pi}{2}} \int_0^{a\cos\theta} r\sqrt{a^2 - r^2} dr d\theta$

$$Put \ a^{2} -$$

$$r^{2} = t^{2}$$

$$-2rdr = 2tdt$$

$$-r dr = t dt$$

$$r \rightarrow 0 = > t \rightarrow a$$

$$r \rightarrow a \cos\theta = > t \rightarrow a$$

$$a \sin\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{a \sin \theta} \sqrt{t^{2}} (-t dt) d\theta$$

$$= -\int_{0}^{\frac{\pi}{2}} \int_{0}^{a \sin \theta} t^{2} dt d\theta = -\int_{0}^{\frac{\pi}{2}} \left[\frac{t^{3}}{3} \right]_{r=a}^{r=a \sin \theta} d\theta$$

$$= -\frac{1}{3} \int_{0}^{\frac{\pi}{2}} [t^{3}]_{a}^{a \sin \theta} d\theta$$

$$= -\frac{1}{3} \int_{0}^{\frac{\pi}{2}} [a^{3} \sin^{3} \theta - a^{3}] d\theta$$

$$= -\frac{a^{3}}{3} \int_{0}^{\frac{\pi}{2}} [\sin^{3} \theta - 1] d\theta$$

$$= \frac{a^{3}}{3} \int_{0}^{\frac{\pi}{2}} [1 - \sin^{3} \theta] d\theta$$

$$= \frac{a^{3}}{3} \left[\theta \right]_{0}^{\frac{\pi}{2}} - \frac{a^{3}}{3} \int_{0}^{\frac{\pi}{2}} \sin^{3} \theta d\theta$$

$$= \frac{a^{3}}{3} \left[\frac{\pi}{2} - 0 \right] - \frac{a^{3}}{3} \left[\frac{\pi}{3} \cdot 1 \right]$$

$$= \frac{a^{3} \pi}{3} \frac{\pi}{2} - \frac{a^{3} 2}{3} \frac{\pi}{3}$$

$$= \frac{a^{3}}{3} \left[\frac{\pi}{2} - \frac{2}{3} \right]$$

Exercise:

1. Evaluate $\iint r \sin\theta \ dr d\theta$ over the cardioid $r = a(1 - \cos\theta)$ above the initial line.

Ans:
$$\frac{4a^2}{3}$$

2. Evaluate $\iint \frac{rdrd\theta}{\sqrt{a^2+r^2}}$ over one loop of the lemniscates $r^2=a^2\cos 2\theta$

Ans: a
$$\left(2 - \frac{\pi}{2}\right)$$

3. Find by double integration the area bounded by the circles $r=2sin\theta$ and $r=4sin\theta$

Ans:3 π

4. Find the area outside $r = 2a\cos\theta$ and inside $r = a(1 + \cos\theta)$ Ans: $\frac{\pi a^2}{2}$

