3.5 Domain and Range of Functions

In mathematics, the **domain** and **range** are fundamental concepts related to functions. Understanding them is essential for analyzing and interpreting the behavior of mathematical functions.

Function Definition

A **function** is a relation that assigns exactly one output for every input from a given set. If we have a function $f:X \rightarrow Yf: X \setminus to Yf:X \rightarrow Y$, it means that for each element $x \in Xx \setminus in Xx \in X$ (the domain), there is exactly one element $f(x) \in Yf(x) \setminus in Yf(x) \in Y$ (the codomain).

- **Domain**: The set of all possible inputs (values) for which the function is defined.
- **Range**: The set of all possible outputs (values) that the function can produce.

Domain of a Function

The **domain** of a function refers to the set of all possible input values for which the function is defined. To determine the domain, we typically follow these steps:

- 1. Identify restrictions on the variable (input) such as:
 - Division by zero (denominators cannot be zero).
 - Square roots (the expression inside the root must be non-negative if considering real numbers).
 - Logarithms (the argument of the logarithm must be positive).
- 2. Look for context:
 - Real-world applications may impose additional restrictions (e.g., negative values of time or distance may not be meaningful).

Examples of Domain Determination:

• **Rational functions** (fractions):

For $f(x)=1x-2f(x) = \frac{1}{x-2}f(x)=x-21$, the domain excludes x=2x = 2x=2, because division by zero is undefined.

- Domain: $x \in \mathbb{R} \setminus \{2\} \times \inf \mathbb{R} \setminus \mathbb{R} \setminus \{2\} \in \mathbb{R} \setminus \{2\}$ (all real numbers except 2).
- Square root functions:

For $g(x)=x-1g(x) = \sqrt{x-1}g(x)=x-1$, the expression inside the square root must be non-negative, so $x-1\ge 0x - 1 \sqrt{g}q \ 0x-1\ge 0$, which gives $x\ge 1x \sqrt{g}q \ 1x\ge 1$.

- Domain: $x \in [1,\infty)x \setminus in [1, \setminus infty)x \in [1,\infty)$.
- Logarithmic functions:

For $h(x) = \log[\frac{1}{3}](x-3)h(x) = \log(x-3)h(x) = \log(x-3)$, the argument of the logarithm must be positive, so x-3>0x-3>0x-3>0, which gives x>3x>3x>3.

• Domain: $x \in (3,\infty)x \setminus in (3, \setminus infty)x \in (3,\infty)$.

Range of a Function

The **range** of a function refers to the set of all possible output values that the function can produce, given its domain.

Steps to find the range:

- 1. Look at the function: Check how the output behaves based on the input.
- 2. Analyze the behavior:
 - For polynomial functions, consider end behavior (e.g., as $x \rightarrow \infty x \setminus to \setminus inftyx \rightarrow \infty$).
 - For rational functions, consider asymptotes or any restrictions.
 - For trigonometric functions, remember their periodicity and amplitude.

Examples of Range Determination:

• Quadratic function:

For $f(x)=x2f(x) = x^2f(x)=x^2$, the output is always non-negative since $x2\ge 0x^2 \ge 0.$ \circ Range: $f(x)\in[0,\infty)f(x) \ge 0.$

Rational function:

For $g(x)=1xg(x) = \frac{1}{x}g(x)=x1$, the output can take any real value except 0, because the function approaches but never equals zero.

• Range: $g(x)\in R\setminus\{0\}g(x) \in \mathbb{R}\setminus\{0\}g(x)\in R\setminus\{0\}$.

• Trigonometric function:

For $\sin[f_0](x) \sin(x)$, the values oscillate between -1 and 1.

• Range: $\sin[f_0](x) \in [-1,1] \setminus \sin(x) \setminus [-1,1] \sin(x) \in [-1,1].$

Domain and Range in Different Types of Functions

Polynomial Functions:

- The domain of any polynomial function is always $R \in \{R\}$ (all real numbers).
- The range depends on the degree and leading coefficient:
 - If the degree is even (e.g., $f(x)=x2f(x)=x^2f(x)=x2$), the range is $[0,\infty)[0, \inf y][0,\infty)$ (for non-negative outputs).
 - If the degree is odd (e.g., $f(x)=x3f(x)=x^3f(x)=x3$), the range is R\mathbb{R}R (all real numbers).

Rational Functions:

- The domain excludes values that make the denominator zero.
- The range depends on the behavior of the function and possible asymptotes.
 - Example: $f(x)=1xf(x) = \frac{1}{x}f(x)=x1$ has domain $R \in \mathbb{R}$ setminus $\{0\}R \in \mathbb{R}$ and range $R \in \mathbb{R}$ setminus $\{0\}R \in \mathbb{R}$.

Square Root Functions:

- The domain is restricted to values where the expression inside the square root is non-negative.
- The range is typically non-negative for real functions.
 - Example: $f(x)=x-3f(x) = \sqrt{x-3} f(x)=x-3$ has domain $x \ge 3x \sqrt{g} = 3x \ge 3$ and range $[0,\infty)[0, \sqrt{n}](0,\infty)$.

Logarithmic Functions:

- The domain requires that the argument inside the logarithm be positive.
- The range is typically $R \in \{R\}R$.
 - Example: $f(x) = \log \frac{f_0}{f_0}(x-2)f(x) = \log(x-2)f(x) = \log(x-2)$ has domain x > 2x > 2x > 2 and range R\mathbb{R}R.

Trigonometric Functions:

- For functions like $sin[f_0](x) \sin(x) sin(x)$ and $cos[f_0](x) \cos(x) cos(x)$, the domain is R\mathbf{R}R (all real numbers), and the range is typically [-1,1][-1,1][-1,1][-1,1].
- For functions like tan^{fo}(x)\tan(x)tan(x), the domain excludes values where the denominator (cosine) equals zero, and the range is R\mathbb{R}R.

How to Express Domain and Range

- Interval notation:
 - [a,b][a, b][a,b] means all values from aaa to bbb inclusive.
 - \circ (a,b)(a, b)(a,b) means all values from aaa to bbb exclusive.
 - $(-\infty,a)(-\sin ty, a)(-\infty,a)$ means all values less than aaa.
 - $(a,\infty)(a, \inf y)(a,\infty)$ means all values greater than aaa.
- Set-builder notation:
 - Domain: $\{x \mid x \ge 3\} \setminus \{x \mid x \ge 3\}$.
 - $\circ \quad Range: \{y|y \ge 0\} \setminus \{ y \setminus y \ge 0 \} \{ y|y \ge 0 \}.$

Special Cases

• Piecewise Functions:

A function defined in pieces may have different domains and ranges in each section. For example:

 $\begin{aligned} f(x) = & x^2 f(x) = begin\{cases\} x^2 & text\{if\} x geq 0, \\ -x^2 & text\{if\} x < 0. \\ & 0.$

- Domain: $R \in \{R\}R$
- Range: $(-\infty,0]\cup[0,\infty)(-\inf ty, 0] \setminus cup [0, \inf ty)(-\infty,0]\cup[0,\infty).$

• Implicit Functions:

For equations like $x^2+y^2=1x^2+y^2=1x^2+y^2=1$ (the equation of a circle), the domain and

range may need to be determined by solving for yyy in terms of xxx, or considering geometric interpretations.

Example Problem:

Given $f(x)=2x+1x^2-4f(x) = \frac{2x+1}{x^2-4} f(x)=x^2-4x+1$, find the domain and range.

- 1. **Domain**: The denominator $x2-4=0x^2 4 = 0x2-4=0$ when x=2x = 2x=2 or x=-2x = -2x=-2, so the domain is all real numbers except x=2x = 2x=2 and x=-2x = -2x=-2.
 - Domain: $x \in \mathbb{R} \setminus \{-2,2\} \times \inf \mathbb{R} \setminus \{-2,2\} \times \mathbb{R} \setminus \{-2,2\}$.
- 2. **Range**: Analyze the behavior of the function as $x \rightarrow \infty x$ \to \infty $x \rightarrow \infty$ or near the asymptotes x=2x=2x=2 and x=-2x=-2x=-2. Through further analysis, we conclude the range is all real numbers except for 0.
 - Range: $f(x) \in \mathbb{R} \setminus \{0\} f(x) \in \mathbb{R} \setminus \{0\} f(x) \in \mathbb{R} \setminus \{0\}$.

Example 1: Linear Function

Function: f(x)=3x+2f(x)=3x+2f(x)=3x+2

• **Domain:** Since this is a polynomial (a linear function), there are no restrictions on xxx. You can plug in any real number for xxx, so the domain is all real numbers.

Domain: $(-\infty,\infty)(-\sinh ty, \sinh ty)(-\infty,\infty)$

• **Range:** As xxx can take any real value, f(x)f(x)f(x) can also take any real value. So, the range is all real numbers.

Range: $(-\infty,\infty)(-\sinh(y))(-\infty,\infty)$

Example 2: Rational Function

Function: $f(x)=1x-3f(x) = \frac{1}{x-3}f(x)=x-31$

• **Domain:** The function has a denominator, and division by zero is undefined. The denominator x-3x - 3x-3 equals zero when x=3x = 3x=3, so x=3x = 3x=3 is not in the domain.

Domain: $(-\infty,3)\cup(3,\infty)(-\sinh y,3) \setminus \exp((3,\sinh y)(-\infty,3)\cup(3,\infty))$

• **Range:** As the denominator can never be zero and the function approaches infinity as xxx approaches 3, the range is all real numbers except 000. It can't output a value of 0, because for f(x)=0f(x)=0f(x)=0, the numerator would have to be 0, which never happens.

Range: $(-\infty,0)\cup(0,\infty)(-\sinh ty, 0) \setminus \operatorname{cup}(0, \sinh ty)(-\infty,0)\cup(0,\infty)$

Example 3: Square Root Function

Function: $f(x)=x-4f(x) = \sqrt{x - 4} f(x)=x-4$

• **Domain:** The expression inside the square root, x-4x - 4x-4, must be greater than or equal to 0 because the square root of a negative number is not a real number. So, we need:

 $x-4 \ge 0 \Rightarrow x \ge 4x - 4 \ (geq \ 0 \ (aud \ (Rightarrow \ (quad \ x \ (geq \ 4x-4 \ge 0 \Rightarrow x \ge 4))))$

Domain: $[4,\infty)[4, \inf ty)[4,\infty)$

• **Range:** Since the square root function always produces non-negative values, the smallest value for f(x)f(x)f(x) occurs when x=4x = 4x=4, giving $f(4)=0=0f(4) = \sqrt{10}=0$. As xxx increases, f(x)f(x)f(x) increases as well.

Range: $[0,\infty)[0, \inf ty)[0,\infty)$

Example 4: Logarithmic Function

Function: $f(x) = \log[f_0](x-1)f(x) = \log(x-1)f(x) = \log(x-1)$

• **Domain:** The argument of the logarithm must be positive, so we need:

 $x-1>0 \Rightarrow x>1x - 1 > 0 \pmod{\text{Rightarrow}} = 1x-1>0 \Rightarrow x>1$

Domain: $(1,\infty)(1, \inf ty)(1,\infty)$

• **Range:** Logarithmic functions can produce any real number, as they can take any positive input x>1x > 1x>1 and map it to any real output.

Range: $(-\infty,\infty)(-\sinh(y), \sinh(y))(-\infty,\infty)$

Example 5: Quadratic Function

Function: $f(x)=x^2-4x+3f(x) = x^2 - 4x + 3f(x)=x^2-4x+3$

• **Domain:** Since this is a polynomial, there are no restrictions on xxx, so the domain is all real numbers.

Domain: $(-\infty,\infty)(-\sinh ty, \sinh ty)(-\infty,\infty)$

• **Range:** To find the range, let's first complete the square to rewrite the function in vertex form:

 $\begin{array}{l} f(x) = & (x2 - 4x + 4) - 4 + 3 = (x - 2)2 - 1 \\ f(x) = & (x^2 - 4x + 4) - 4 + 3 = (x - 2)^2 - 1 \\ f(x) = & (x2 - 4x + 4) - 4 + 3 = (x - 2)2 - 1 \end{array}$

The vertex form of the function is $f(x)=(x-2)2-1f(x) = (x-2)^2 - 1f(x)=(x-2)2-1$, which has a minimum value of -1-1-1 at x=2x=2x=2. Since the square of any real number is non-negative, $(x-2)2\ge 0(x-2)^2 \log 0(x-2)2\ge 0$, so the smallest value of f(x)f(x)f(x) is -1-1-1.

Range: $[-1,\infty)[-1, \forall infty)[-1,\infty)$

Example 6: Piecewise Function

Function:

Domain: The function is defined for all real numbers, since it provides a rule for both x≥0x \geq 0x≥0 and x<0x < 0x<0.

Domain: $(-\infty,\infty)(-\sinh(y), \sinh(y))(-\infty,\infty)$

Range: For x≥0x \geq 0x≥0, the function f(x)=x+2f(x) = x + 2f(x)=x+2 has a range of [2,∞)[2, \infty)[2,∞). For x<0x < 0x<0, the function f(x)=-x+1f(x) = -x + 1f(x)=-x+1 has a range of (-∞,1)(-\infty, 1)(-∞,1). Since the function includes all values from 222 and higher, and all values from negative infinity up to 111, the full range is:

Range: $(-\infty,1)\cup[2,\infty)(-(infty, 1)) \cup [2, (infty)(-\infty,1)\cup[2,\infty))$

Recap of Steps for Finding Domain and Range:

- 1. **Domain:**
 - Identify any values of xxx that make the function undefined (e.g., division by zero, negative square roots, logarithms of non-positive numbers).
 - Exclude those values from the domain.
- 2. Range:
 - Consider the type of function and the behavior of the function (e.g., polynomial, rational, square root, etc.).
 - Look for maximum or minimum values, and how the function behaves as xxx approaches extreme values.