
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

HASH TABLE

Hash Table is a data structure which stores data in an associative manner. In hash table,

the data is stored in an array format where each data value has its own unique index value.

Access of data becomes very fast, if we know the index of the desired data.

Hash Table is a data structure which stores data in an associative manner. In a hash
table, data is stored in an array format, where each data value has its own unique index
value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast
irrespective of the size of the data. Hash Table uses an array as a storage medium and
uses hash technique to generate an index where an element is to be inserted or is to be
located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an
array. We're going to use modulo operator to get a range of key values. Consider an
example of hash table of size 20, and the following items are to be stored. Item are in
the (key,value) format.

 (1,20)

 (2,70)

 (42,80)

 (4,25)

 (12,44)

 (14,32)

 (17,11)

 (13,78)

 (37,98)

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Sr.No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already
used index of the array. In such a case, we can search the next empty location in the
array by looking into the next cell until we find an empty cell. This technique is called
linear probing.

Sr.No. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

 Search − Searches an element in a hash table.

 Insert − inserts an element in a hash table.

 delete − Deletes an element from a hash table.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

DataItem

Define a data item having some data and key, based on which the search is to be
conducted in a hash table.

struct DataItem {

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

 return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and
locate the element using that hash code as index in the array. Use linear probing to get
the element ahead if the element is not found at the computed hash code.

Example

struct DataItem *search(int key) {

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] != NULL) {

 if(hashArray[hashIndex]->key == key)

 return hashArray[hashIndex];

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

Insert Operation

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Whenever an element is to be inserted, compute the hash code of the key passed and
locate the index using that hash code as an index in the array. Use linear probing for
empty location, if an element is found at the computed hash code.

Example

void insert(int key,int data) {

 struct DataItem *item = (struct DataItem*) malloc(sizeof(struct

DataItem));

 item->data = data;

 item->key = key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty or deleted cell

 while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key

!= -1) {

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 hashArray[hashIndex] = item;

}

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and
locate the index using that hash code as an index in the array. Use linear probing to get
the element ahead if an element is not found at the computed hash code. When found,
store a dummy item there to keep the performance of the hash table intact.

Example

struct DataItem* delete(struct DataItem* item) {

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL) {

 if(hashArray[hashIndex]->key == key) {

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-V EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

	Hashing
	Linear Probing
	Basic Operations
	DataItem
	Hash Method
	Search Operation
	Example

	Insert Operation
	Example

	Delete Operation
	Example

