
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

5.6. SQL Injection

SQL injection and buffer overflows are hacking techniques used to exploit weaknesses in

applications. When programs are written, some parameters used in the creation of the

application code can leave weaknesses in the program. SQL injection and buffer overflows are

covered in the same chapter because they both are methods used to attack application and are

generally caused by programming flaws. Generally, the purpose of SQL injection is to convince

the application to run SQL code that was not intended.

SQL injection is a hacking method used to attack SQL databases, whereas buffer overflows can

exist in many different types of applications. SQL injection and buffer overflows are similar

exploits in that they’re both usually delivered via a user input field. The input field is where a

user may enter a username and password on a website, add data to a URL, or perform a search

for a keyword in another application. The SQL injection vulnerability is caused primarily by

unverified or unsanitized user input via these fields.

Both SQL Server injection and buffer overflow vulnerabilities are caused by the same issue:

invalid parameters that are not verified by the application. If programmers don’t take the time

to validate the variables a user can enter into a variable field, the results can be serious and

unpredictable. Sophisticated hackers can exploit this vulnerability, causing an execution fault

and shutdown of the system or application, or a command shell to be executed for the hacker.

SQL injection and buffer overflow countermeasures are designed to utilize secure programming

methods. By changing the variables used by the application code, weaknesses in applications

can be greatly minimized. This chapter will detail how to perform a SQL injection and a buffer

overflow attack and explore the best countermeasures to prevent the attack.

As a CEH(Certified Ethical Hacker), it’s important for you to be able to define SQL injection and

understand the steps a hacker takes to conduct a SQL injection attack. In addition, you should

know SQL Server vulnerabilities, as well as countermeasures to SQL injection attacks.

SQL injection occurs when an application processes user-provided data to create a SQL

statement without first validating the input. The user input is then submitted to a web

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

application database server for execution. When successfully exploited, SQL injection can give

an attacker access to database content or allow the hacker to remotely execute system

commands. In the worst-case scenario, the hacker can take control of the server that is hosting

the database. This exploit can give a hacker access to a remote shell into the server file system.

The impact of a SQL injection attacks depends on where the vulnerability is in the code, how easy

it is to exploit the vulnerability, and what level of access the application has to the database.

Theoretically, SQL injection can occur in any type of application, but it is most commonly

associated with web applications because they are most often attacked. During a web

application SQL injection attack, malicious code is inserted into a web form field or the website’s

code to make a system execute a command shell or other arbitrary commands. Just as a

legitimate user enters queries and additions to the SQL database via a web form, the hacker can

insert commands to the SQL Server through the same web form field. For example, an arbitrary

command from a hacker might open a command prompt or display a table from the database. A

database table may contain personal information such as credit card numbers, social security

numbers, or passwords. SQL Servers are very common database servers and used by many

organizations to store confidential data. This makes a SQL Server a high-value target and

therefore a system that is very attractive to hackers.

Finding a SQL Injection Vulnerability

Before launching a SQL injection attack, the hacker determines whether the configuration of the

database and related tables and variables is vulnerable. The steps to determine the SQL Server’s

vulnerability are as follows:

1. Using your web browser, search for a website that uses a login page or other database input

or query fields (such as an “I forgot my password” form). Look for web pages that display the

POST or GET HTML commands by checking the site’s source code.

2. Test the SQL Server using single quotes (‘’). Doing so indicates whether the user input variable

is sanitized or interpreted literally by the server. If the server responds with an error message

that says use 'a'='a' (or something similar), then it’s most likely susceptible to a SQL injection

attack.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

3. Use the SELECT command to retrieve data from the database or the INSERT command to add

information to the database.

Here are some examples of variable field text you can use on a web form to test for SQL

vulnerabilities:

Blah’ or 1=1- Login:blah’ or 1=1-

Password::blah’ or 1=1--

http://search/index.asp?id=blah’ or 1=1--

These commands and similar variations may allow a user to bypass a login depending on the

structure of the database. When entered in a form field, the commands may return many rows

in a table or even an entire database table because the SQL Server is interpreting the terms

literally. The double dashes near the end of the command tell SQL to ignore the rest of the

command as a comment.

Here are some examples of how to use SQL commands to take control: To get a

directory listing, type the following in a form field:

Blah‘;exec master..xp_cmdshell “dir c:*.* /s >c:\directory.txt”-To create a file, type

the following in a form field:

Blah‘;exec master..xp_cmdshell “echo hacker-was-here > c:\hacker.txt”-To ping an IP

address, type the following in a form field:

Blah‘;exec master..xp_cmdshell “ping 192.168.1.1”--

The Purpose of SQL Injection

SQL injection attacks are used by hackers to achieve certain results. Some SQL exploits will

produce valuable user data stored in the database, and some are just precursors to other attacks.

The following are the most common purposes of a SQL injection attack:

Identifying SQL Injection Vulnerability The purpose is to probe a web application to discover

which parameters and user input fields are vulnerable to SQL injection.

Performing Database Finger-Printing The purpose is to discover the type and version of

database that a web application is using and “fingerprint” the database. Knowing the type and

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

version of the database used by a web application allows an attacker to craft database specific

attacks.

Determining Database Schema To correctly extract data from a database, the attacker often

needs to know database schema information, such as table names, column names, and column

data types. This information can be used in a follow-on attack.

Extracting Data These types of attacks employ techniques that will extract data values from the

database. Depending on the type of web application, this information could be sensitive and

highly desirable to the attacker.

Adding or Modifying Data The purpose is to add or change information in a database.

Performing Denial of Service These attacks are performed to shut down access to a web

application, thus denying service to other users. Attacks involving locking or dropping database

tables also fall under this category.

Evading Detection This category refers to certain attack techniques that are employed to avoid

auditing and detection.

Bypassing Authentication The purpose is to allow the attacker to bypass database and

application authentication mechanisms. Bypassing such mechanisms could allow the attacker to

assume the rights and privileges associated with another application user.

Executing Remote Commands These types of attacks attempt to execute arbitrary commands

on the database. These commands can be stored procedures or functions available to database

users.

Performing Privilege Escalation These attacks take advantage of implementation errors or

logical flaws in the database in order to escalate the privileges of the attacker.

SQL Injection Using Dynamic Strings

Most SQL applications do a specific, predictable job. Many functions of a SQL database receive

static user input where the only variable is the user input fields. Such statements do not change

from execution to execution. They are commonly called static SQL statements.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

However, some programs must build and process a variety of SQL statements at runtime. In

many cases the full text of the statement is unknown until application execution. Such

statements can, and probably will, change from execution to execution. So, they are called

dynamic SQL statements.

Dynamic SQL is an enhanced form of SQL that, unlike standard SQL, facilitates the automatic

generation and execution of program statements. Dynamic SQL is a term used to mean SQL code

that is generated by the web application before it is executed. Dynamic SQL is a flexible and

powerful tool for creating SQL strings. It can be helpful when you find it necessary to write code

that can adjust to varying databases, conditions, or servers. Dynamic SQL also makes it easier to

automate tasks that are repeated many times in a web application.

A hacker can attack a web-based authentication form using SQL injection through the use of

dynamic strings. For example, the underlying code for a web authentication form on a web server

may look like the following:

SQLCommand = “SELECT Username FROM Users WHERE Username = ‘“

SQLCommand = SQLComand & strUsername

SQLCommand = SQLComand & “‘ AND Password = ‘“

SQLCommand = SQLComand & strPassword

SQLCommand = SQLComand & “‘“ strAuthCheck =

GetQueryResult(SQLQuery)

A hacker can exploit the SQL injection vulnerability by entering a login and password in the

web form that uses the following variables:

Username: kimberly

Password: graves’ OR ‘’=’

The SQL application would build a command string from this input as follows:

SELECT Username FROM Users

WHERE Username = ‘kimberly’

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

AND Password = ‘graves’ OR ‘’=’’

This is an example of SQL injection: this query will return all rows from the user’s database,

regardless of whether kimberly is a real username in the database or graves is a legitimate

password. This is due to the OR statement appended to the WHERE clause. The comparison ‘’=’’

will always return a true result, making the overall WHERE clause evaluate to true for all rows in

the table. This will enable the hacker to log in with any username and password.

SQL Injection Countermeasures

The cause of SQL injection vulnerabilities is relatively simple and well understood: insufficient

validation of user input. To address this problem, defensive coding practices, such as encoding

user input and validation, can be used when programming applications. It is a laborious and

time-consuming process to check all applications for SQL injection vulnerabilities.

When implementing SQL injection countermeasures, review source code for the following

programming weaknesses:

 Single quotes

 Lack of input validation

Buffer Overflows

The first countermeasures for preventing a SQL injection attack are minimizing the privileges

of a user’s connection to the database and enforcing strong passwords for SA and Administrator

accounts. You should also disable verbose or explanatory error messages so no more

information than necessary is sent to the hacker; such information could help them determine

whether the SQL Server is vulnerable. Remember that one of the purposes of SQL injection is

to gain additional information as to which parameters are susceptible to attack.

Another countermeasure for preventing SQL injection is checking user data input and validating

the data prior to sending the input to the application for processing.

Some countermeasures to SQL injection are

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

 Rejecting known bad input

 Sanitizing and validating the input field

As a CEH, you must be able to identify different types of buffer overflows. You should also know

how to detect a buffer overflow vulnerability and understand the steps a hacker may use to

perform a stack-based overflow attack. We’ll look at these topics, as well as provide an overview

of buffer-overflow mutation techniques, in the following sections.

Types of Buffer Overflows and Methods of Detection

Buffer overflows are exploits that hackers use against an operating system or application; like

SQL injection attacks, they’re usually targeted at user input fields. A buffer overflow exploit

causes a system to fail by overloading memory or executing a command shell or arbitrary code

on the target system. A buffer overflow vulnerability is caused by a lack of bounds checking or

a lack of input-validation sanitization in a variable field (such as on a web form). If the

application doesn’t check or validate the size or format of a variable before sending it to be

stored in memory, an overflow vulnerability exits.

The two types of buffer overflows are stack based and heap based.

The stack and the heap are storage locations for user-supplied variables within a

running program. Variables are stored in the stack or heap until the program needs

them. Stacks are static locations of memory address space, whereas heaps are dynamic

memory address spaces that occur while a program is running. A heap-based buffer

overflow occurs in the lower part of the memory and overwrites other dynamic

variables

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

Fig: Stack versus Heap Memory

A call stack, or stack, is used to keep track of where in the programming code the execution

pointer should return after each portion of the code is executed. A stack-based buffer overflow

attack (occurs when the memory assigned to each execution routine is overflowed. As a

consequence of both types of buffer overflows, a program can open a shell or command prompt

or stop the execution of a program. The next section describes stackbased buffer overflow

attacks.

Fig: A stack-based buffer overflow attack

TEXT

DATA

HEAP

STACK

Computer Memory (RAM)

Normal Program Memory Stack

Program goes to next Instruction Address

Execution
Pointer

Program Variable Program Variable Program Execution

Computer Memory (RAM)

Buffer Overflow Memory Attack

Program goes to next Instruction Address which is the location of the Hackers’ code

Overflowed Pointer
Executes Malicious
Code

Hackers’ Code Program Variable Program Execution

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8074 CYBER FORENSICS

To detect program buffer overflow vulnerabilities that result from poorly written source code,

a hacker sends large amounts of data to the application via a form field and sees what the

program does as a result.

The following are the steps a hacker uses to execute a stack-based buffer overflow:

1. Enter a variable into the buffer to exhaust the amount of memory in the stack.

2. Enter more data than the buffer has allocated in memory for that variable, which causes the

memory to overflow or run into the memory space for the next process. Then, add another

variable, and overwrite the return pointer that tells the program where to return to after

executing the variable.

3. A program executes this malicious code variable and then uses the return pointer to get back

to the next line of executable code. If the hacker successfully overwrites the pointer, the

program executes the hacker’s code instead of the program code.

Most hackers don’t need to be this familiar with the details of buffer overflows. Prewritten

exploits can be found on the Internet and are exchanged between hacker groups.

