4.4 TESTS ON AGGREGATES ### **Abrasion Test** - The principle of Los Angeles abrasion test is to find the percentage wear due to relative rubbing action between the aggregate and steel balls used as abrasive charge. - Los Angeles machine consists of circular drum of internal diameter 700 mm and length 520 mm mounted on horizontal axis enabling it to be rotated. - An abrasive charge consisting of cast iron spherical balls of 48 mm diameters and weight 340-445 g is placed in the cylinder along with the aggregates. - The number of the abrasive spheres varies according to the grading of the sample. - The quantity of aggregates to be used depends upon the gradation and usually ranges from 5-10 kg. - The cylinder is then locked and rotated at the speed of 30-33 rpm for a total of 500 1000 revolutions depending upon the gradation of aggregates. - After specified revolutions, the material is sieved through 1.7 mm sieve and passed fraction is expressed as percentage total weight of the sample. - This value is called Los Angeles abrasion value. A maximum value of 40 percent is allowed for WBM base course in Indian conditions. For bituminous concrete, a maximum value of 35 is specified. Figure 4.4.1 Los Angeles Abrasion Test Machine [Source: "Highway Engineering" by S.K.Khanna, C.E.G.Justo, Page: 296] ## **Impact Test** - The aggregate impact test is carried out to evaluate the resistance to impact of aggregates. - Aggregates passing 12.5 mm sieve and retained on 10 mm sieve is filled in a cylindrical steel cup of internal dia 10.2 mm and depth5 cm which is attached to a metal base of impact testing machine. - The material is filled in 3 layers where each layer is tamped for 25 number of blows. Metal hammer of weight 13.5 to 14 Kg is arranged to drop with a Free fall of 38.0 cm by vertical guides and the test specimen is subjected to 15 number of blows. $${\rm Aggregate~impact~value} = \frac{W_1}{W_2} \times 100$$ - The crushed aggregate is allowed to pass through 2.36 mm IS sieve. - And the impact value is measured as percentage of aggregates passing sieve (W2) to the total weight of the sample (W1). - Aggregates to be used for wearing course, the impact value shouldn't exceed 30 percent. - For bituminous macadam the maximum permissible value is 35 percent. For Water bound macadam base courses the maximum permissible value defined by IRC is 40 percent **Figure 4.4.1 Aggregate Impact Testing Machine** [Source: "Highway Engineering" by S.K.Khanna, C.E.G.Justo, Page: 298] ### **SHAPE TEST** - The particle shape of the aggregate mass is determined by the percentage of flaky and elongated particles in it. - Aggregates which are flaky or elongated are detrimental to higher workability and stability of mixes. - The flakiness index is defined as the percentage by weight of aggregate particles whose least dimension is less than 0.6 times their mean size. - For determining the flakiness index of aggregate. It consists of a panel having accurately cut slots of different standard lengths and width. - Particle is elongated when its length (longest dimension) is more than 1.8 of the midsize of the sieve fraction. - Aggregate to be classified is separated into seven sieve fractions from 63 to 6.3mm, and each fraction is examined separately. - Six labeled openings between pairs of metal pins measure particle from each of the six sieve cuts below 50mm. - The mass of all elongated particles (failing to pass between pins) as percent of the sample is the elongation index. Meets BS 812. - Select the length gauge appropriate to the size-fraction under test and gauge each particle separately by hand. Elongated particles are those whose greatest dimension prevents them from passing through the gauge - From the sum of masses of the fractions in the trays(M1), calculate the individual percentages retained on each of the various sieves. Discard any fraction whose mass is 5% or less of mass M1. Record the mass remaining (M2) - Gauge each fraction as follows. Select the length gauge appropriate to the size-fraction under test and gauge each particle separately by hand. - Elongated particles are those whose greatest dimension prevents them from passing through the gauge. - Combine and weigh all Elongated particles (M3). Elongation index = $$\frac{M3}{M2}$$ X 100 # **Water Absorption Test** - Water absorption is the difference between the apparent and bulk specific gravities or water permeable voids of the aggregates. - We can measure the volume of such voids by weighing the aggregates dry and in a saturated, surface dry condition, with all permeable voids filled with water. - The difference of the above two is MW. MW is the weight of dry aggregates minus weight of aggregates saturated surface dry condition. water absorption = $$\frac{M_W}{M_D} \times 100$$ • Water absorption values ranges from 0.1 to about 2.0 percent for aggregates normally used in road surfacing.