
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC8553-DISCRETE TIME SIGNAL PROCESSING

CIRCULAR BUFFERING

A digital signal processor is a specialized microprocessor for the kind of algorithms

employed in digital signal processing (DSP). The main goal is to accelerate the

calculations while keeping the power consumption as low as possible. In this article,

we review a basic addressing capability of DSP processors, i.e. circular buffering,

which allows us to significantly accelerate the data transfer in a real-time system.

Please note that since the acronym “DSP” stands for both “digital signal processing”

and “digital signal processor," we will use the term “DSP processor” when referring

to the hardware rather than the algorithm.

Since the finite-impulse-response (FIR) filtering is a common operation in DSP, we

will continue our discussion based on examining the difference equation of an FIR

filter. This simple example will show the typical properties of many DSP algorithms.

After reviewing the problem of handling the incoming samples, we will discuss the

circular buffering as an efficient solution to the problem.

Linear Buffering

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC8553-DISCRETE TIME SIGNAL PROCESSING

Figure (a) shows that, at time index n = 3 n=3, the last four samples stored in the

memory are x (3) x(3), x (2) x(2), x (1) x(1), and x (0) x(0). When a new

sample is acquired at n = 4 n=4, the last four

samples, x (4) x(4), x (3) x(3), x (2) x(2), and x (1) x(1), will be stored in the

memory as shown in Figure (b). This approach to storing the incoming samples is

called the linear buffering. As we will see in a minute, it is simple but not at all

efficient.

The main problem with linear buffering is the amount of the data transfer that we

need to handle. Consider the above linear buffer for the four-tap FIR filter. With

each new sample, we have to read three memory locations and write their contents

to another location in our array. This is shown in Figure 4. We observe that the

number of read and write operations are proportional to the length of the filter. That’s

why the linear buffering is not an efficient method of storing the incoming samples.

For example, if we use a linear buffer to implement a 256-tap filter, then, with each

new sample acquired, we have to perform almost 256 read and write operations!

Circular Buffering

Let’s examine the above Figure one more time. The memory in Figure (a) stores

four input samples: x (0) x(0), x (1) x(1), x (2) x(2), and x (3) x(3). Figure

(b) stores x (1) x(1), x (2) x(2), x (3) x(3) along with the new

sample x (4) x(4). We observe that three values,

i.e. x (3) x(3), x (2) x(2), x (1) x(1), are common between the two cases

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC8553-DISCRETE TIME SIGNAL PROCESSING

shown in Figure 3; however different memory locations are used to store these

common values.

Can we use the above observation to reduce the number of the required read and

write operations? For example, what’s the point of copying x (3) x(3) from the

hypothetical memory location 2004 in Figure (a) to the address 2003 in Figure (b),

and then using it in the upcoming calculations? If we keep the common values where

they currently reside, then we only need to store the new sample, i.e. x (4) x(4), in

the memory. When x (4) x(4) is acquired, we no longer need x (0) x(0), hence,

we can use the memory location 2001 to store x (4) x(4). The result is shown in

below Figure . As shown in this figure, the newest sample, x (4) x(4), replaces the

oldest sample x (0) x(0). This technique for storing the incoming samples is called

the circular buffering. In this way, with each new sample, only a single memory

write operation is required.

