
Rohini college of Engineering and technology

58
CS8392 Object Oriented Programming

4.8 Generic Programming
The term generics means parameterized types. Parameterized types
are important because they enable you to create classes, interfaces,
and methods in which the type of data upon which they operate is
specified as a parameter.
Using generics, it is possible to create a single class, for example, that
automatically works with different types of data. A class, interface, or

method that operates on a parameterized type is called generic, as in
generic class or generic method.
Object is the superclass of all other classes, an Object reference can
refer to any type object. Thus, in pre-generics code, generalized
classes, interfaces, and methods used Object references to operate on
various types of objects.
Java Generic methods and generic classes enable programmers to
specify, with a single method declaration, a set of related methods, or
with a single class declaration, a set of related types, respectively.
Generics also provide compile-time type safety that allows
programmers to catch invalid types at compile time.
Using Java Generic concept, we might write a generic method for
sorting an array of objects, then invoke the generic method with Integer
arrays, Double arrays, String arrays and so on, to sort the array
elements.

Rohini college of Engineering and technology

59
CS8392 Object Oriented Programming

4.9 Generic Classes

A class that can refer to any type is known as generic class. Here, we
are using T type parameter to create the generic class of specific type.

General Form:
class class-name<type-param-list>

{
//Body of the class

}

Class Reference Declaration:

class-name<type-arg-list> var-name=new class-
name<type-arg-list>(cons-arg-list)

4.9.1 Generic class with single type parameters
The following program defines two classes. The first is the generic class
Gen and the second class GenDemo, which uses Gen. Here T is a type
parameter that will be replaced by a real type when an object of type
Gen is created.

Example Program:
class Gen<T>

{
T ob; // declare an object of type T
// Pass the constructor a reference to
// an object of type T.
Gen(T o)

{
ob = o;

}
// Return ob.

T getob()

{
return ob;

}
// Show type of T.
void showType()

{

Rohini college of Engineering and technology

60
CS8392 Object Oriented Programming

System.out.println("Type of T is " + ob.getClass().getName()); }

}
// Demonstrate the generic class.
class GenDemo

{
public static void main(String args[])

{
// Create a Gen reference for Integers.
Gen<Integer> iOb;
// Create a Gen<Integer> object and assign its
// reference to iOb. Notice the use of autoboxing

// to encapsulate the value 88 within an Integer object.
iOb = new Gen<Integer>(88);
// Show the type of data used by iOb.
iOb.showType();
// Get the value in iOb. Notice that
// no cast is needed.
int v = iOb.getob();
System.out.println("value: " + v);

System.out.println();

// Create a Gen object for Strings.
Gen<String> strOb = new Gen<String> ("Generics Test");
// Show the type of data used by strOb. strOb.showType();
// Get the value of strOb. Again, notice // that no cast is
needed.
String str = strOb.getob();
System.out.println("value: " + str);

} }

Output:

Type of T is java.lang.Integer value: 88
Type of T is java.lang.String value: Generics Test

Rohini college of Engineering and technology

61
CS8392 Object Oriented Programming

4.9.2 Generic class with two type parameters

In a generic type, more than one type parameter can be declared. To
specify two or more type parameters, simply use a comma-separated
list.

Example Program:
// A simple generic class with two type
// parameters: T and V. class TwoGen<T, V> { T ob1;
V ob2;
// Pass the constructor a reference to
// an object of type T and an object of type V.
TwoGen(T o1, V o2) { ob1 = o1;
ob2 = o2; }

// Show types of T and V.

void showTypes()

{
System.out.println("Type of T is " +ob1.getClass().getName());
System.out.println("Type of V is " +ob2.getClass().getName()); }

T getob1()

{
return ob1;

}
V getob2()

{
return ob2;

}
}
// Demonstrate TwoGen.
class SimpGen

{
public static void main(String args[])

{
TwoGen<Integer, String> tgObj =new TwoGen<Integer, String>(88,
"Generics");
// Show the types.
tgObj.showTypes();
// Obtain and show values.

Rohini college of Engineering and technology

62
CS8392 Object Oriented Programming

int v = tgObj.getob1();

System.out.println("value: " + v);
String str = tgObj.getob2();
System.out.println("value: " + str);

}
}

Output:
Type of T is java.lang.Integer
Type of V is java.lang.String
value: 88
value: Generics

4.10 Generic Methods
Generic method is a method with type parameters. In this
Generic concept , types and methods can be generic.
Syntax:
<type-param-list>re-type meth-name(param-list)

{
// Function Body

}
where

type-param-list is a list of type parameters separated by
commas

You can write a single generic method declaration that can be called
with arguments of different types. Based on the types of the arguments
passed to the generic method, the compiler handles each method call
appropriately. Following are the rules to define Generic Methods -

• All generic method declarations have a type parameter section

delimited by angle brackets (< and >) that precedes the method's
return type (< E > in the next example).

• Each type parameter section contains one or more type
parameters separated by commas. A type parameter, also known
as a type variable, is an identifier that specifies a generic type
name.

• The type parameters can be used to declare the return type
and act as placeholders for the types of the arguments

Rohini college of Engineering and technology

63
CS8392 Object Oriented Programming

passed to the generic method, which are known as actual type

arguments.
• A generic method's body is declared like that of any other

method. Note that type parameters can represent only reference
types, not primitive types (like int, double and char).

Example Program1:
public class GenericMethodTest

{
// generic method printArray

public static < E > void printArray(E[] inputArray) {

// Display array elements for(E element : inputArray) {
System.out.printf("%s ", element);

}
System.out.println();

}
public static void main(String args[]) {

// Create arrays of Integer, Double and Character Integer[] intArray =
{ 1, 2, 3, 4, 5 };

Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };
System.out.println("Array integerArray contains:");
printArray(intArray); // pass an Integer array
System.out.println("\nArray doubleArray contains:");
printArray(doubleArray); // pass a Double array
System.out.println("\nArray characterArray contains:");
printArray(charArray); // pass a Character array } }

Output:

Array integerArray contains: 1 2 3 4 5
Array doubleArray contains:
1.1 2.2 3.3 4.4
Array characterArray contains: H E L L O

Example Program2:
public class TestGenerics4 {

public static < E > void printArray(E[] elements) {

Rohini college of Engineering and technology

64
CS8392 Object Oriented Programming

for (E element : elements)

{
System.out.println(element);

}
System.out.println();

}
public static void main(String args[])

{
Integer[] intArray = { 10, 20, 30, 40, 50 };
Character[] charArray = { 'J', 'A', 'V', 'A', 'T','P','O','I','N','T' };
System.out.println("Printing Integer Array");
printArray(intArray);
System.out.println("Printing Character Array");
printArray(charArray);

}
}

Output:
Printing Integer Array

10

20
30
40
50
Printing Character Array
J
A
V
A
T

P
O
I
N
T

Example Program3:
// Demonstrate a simple generic method.

Rohini college of Engineering and technology

65
CS8392 Object Oriented Programming

class GenMethDemo

{
// Determine if an object is in an array.
static <T, V extends T> boolean isIn(T x, V[] y)

{
for(int i=0; i < y.length; i++)
if(x.equals(y[i])) return true;
return false;

}
public static void main(String args[])

{
// Use isIn() on Integers.
Integer nums[] = { 1, 2, 3, 4, 5 };
if(isIn(2, nums))
System.out.println("2 is in nums");
if(!isIn(7, nums))
System.out.println("7 is not in nums");
System.out.println();
// Use isIn() on Strings.
String strs[] = { "one", "two", "three","four", "five" };

if(isIn("two", strs))
System.out.println("two is in strs");
if(!isIn("seven", strs))
System.out.println("seven is not in strs");
// Oops! Won't compile! Types must be compatible.
// if(isIn("two", nums))
// System.out.println("two is in strs");

}
}

Output:
2 is in nums
7 is not in nums
two is in strs
seven is not in strs

4.10.1 Generic Constructors
A generic constructor is a constructor with type parameters.

Rohini college of Engineering and technology

66
CS8392 Object Oriented Programming

Example Program:

// Use a generic constructor.
class GenCons

{
private double val;
<T extends Number> GenCons(T arg)

{
val = arg.doubleValue();

}
void showval()

{
System.out.println("val: " + val);

}
}
class GenConsDemo

{
public static void main(String args[])

{
GenCons test = new GenCons(100);
GenCons test2 = new GenCons(123.5F);
test.showval();
test2.showval();

}
}

Output:
val: 100.0
val: 123.5

4.11 Bounded Types
Bounded type parameters can be a type parameter with one or more
bounds. The bounds restrict the set of types that can be used as type
arguments and give access to the methods defined by the bounds.

General Form:

To declare a parameter with bounded type, the list of type parameter
names can be followed by the extends keyword.

Rohini college of Engineering and technology

67
CS8392 Object Oriented Programming

<T extends superclass>

This specifies that T can be replaced by superclass.Superclass defines
an inclusive,upper limit.

Example Program1: public class MaximumTest {

// determines the largest of three Comparable objects public static <T

extends Comparable<T>> T maximum(T x, T y, T z) {

T max = x; // assume x is initially the largest if(y.compareTo(max) >
0) { max = y; // y is the largest so far } if(z.compareTo(max) > 0) {

max = z; // z is the largest now } return max; // returns the largest
object } public static void main(String args[]) {
System.out.printf("Max of %d, %d and %d is %d\n\n",3, 4, 5,
maximum(3, 4, 5));
System.out.printf("Max of %.1f,%.1f and %.1f is %.1f\n\n",6.6, 8.8,
7.7, maximum(6.6, 8.8, 7.7));
System.out.printf("Max of %s, %s and %s is %s\n","pear","apple",
"orange", maximum("pear", "apple", "orange"));

} }

Output:
Max of 3, 4 and 5 is 5
Max of 6.6,8.8 and 7.7 is 8.8
Max of pear, apple and orange is pear

Example Program2:
class Stats<T extends Number>
{
T[] nums; // array of Number or subclass
// Pass the constructor a reference to
// an array of type Number or subclass.
Stats(T[] o)
{ nums = o;
}
// Return type double in all cases.
double average()
{
double sum = 0.0;
for(int i=0; i < nums.length; i++)

Rohini college of Engineering and technology

68
CS8392 Object Oriented Programming

sum += nums[i].doubleValue();
return sum / nums.length;
}
}
// Demonstrate Stats.

class BoundsDemo
{
public static void main(String args[])
{
Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integer>(inums);
double v = iob.average();
System.out.println("iob average is " + v);
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double>(dnums);
double w = dob.average();
System.out.println("dob average is " + w);

// This won't compile because String is not a
// subclass of Number.
// String strs[] = { "1", "2", "3", "4", "5" };

// Stats<String> strob = new Stats<String>(strs);
// double x = strob.average();
// System.out.println("strob average is " + v);

}
}

Output:
iob average is 3.0
dob average is 3.3

4.11.1 Wild Card Arguments
A wildcard is a syntactic construct that denotes a family of types.

A wildcard describes a family of types. The different types of wildcards
are given below

Notation Meaning

<T> Concrete type

Rohini college of Engineering and technology

69
CS8392 Object Oriented Programming

<?> The unbounded wildcard. It stands for

the family of all types

<?super
subclass>

A bounded wildcard supertype of T. It
stands for the family of all types that
are supertypes of Type,type Type
being included

<?extends
superclass>

A bounded wildcard subtype of T

<U extends
T>

U must be a supertype of T

4.11.2 Unbounded Wildcard
The wildcard “?” matches any type of valid stats object.

Example Program:
class Stats<T extends Number> {

T[] nums; // array of Number or subclass
// Pass the constructor a reference to
// an array of type Number or subclass.
Stats(T[] o)

{
nums = o;

}
// Return type double in all cases.
double average()

{
double sum = 0.0;

for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue();
return sum / nums.length;

}
// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob)

{
if(average() == ob.average())
return true;

Rohini college of Engineering and technology

70
CS8392 Object Oriented Programming

return false;

}
}
// Demonstrate wildcard.

class WildcardDemo

{
public static void main(String args[])

{
Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integer>(inums);

double v = iob.average();
System.out.println("iob average is " + v);
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double>(dnums);
double w = dob.average();
System.out.println("dob average is " + w);
Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };

Stats<Float> fob = new Stats<Float>(fnums);
double x = fob.average();
System.out.println("fob average is " + x);

// See which arrays have same average.
System.out.print("Averages of iob and dob ");
if(iob.sameAvg(dob))
System.out.println("are the same.");
else
System.out.println("differ.");
System.out.print("Averages of iob and fob ");
if(iob.sameAvg(fob))
System.out.println("are the same.");
else
System.out.println("differ.");

}
}

Output:
iob average is 3.0
dob average is 3.3
fob average is 3.0

Rohini college of Engineering and technology

71
CS8392 Object Oriented Programming

Averages of iob and dob differ.
Averages of iob and fob are the same.

4.11.3 Bounded Wildcards
Wildcard arguments can be bounded in much the same way that a type
parameter can be bounded. A bounded wildcard is especially important
when you are creating a generic type that will operate on a class
hierarchy.
A bounded wildcard specifies either an upper bound or a lower bound
for the type argument. This enables you to restrict the types of objects

upon which a method will operate. The most common bounded wildcard
is the upper bound, which is created using an extends clause in much
the same way it is used to create a bounded type.

Example Program:
class TwoD

{
int x, y;
TwoD(int a, int b)

{
x = a;
y = b;

}
}
// Three-dimensional coordinates.
class ThreeD extends TwoD

{
int z;
ThreeD(int a, int b, int c)

{
super(a, b);
z = c;

}
}
// Four-dimensional coordinates.
class FourD extends ThreeD

{
int t;

Rohini college of Engineering and technology

72
CS8392 Object Oriented Programming

FourD(int a, int b, int c, int d)

{
super(a, b, c);
t = d;

}
}
// This class holds an array of coordinate objects. class Coords<T
extends TwoD>

{
T[] coords;
Coords(T[] o)

{
coords = o;

}

}
// Demonstrate a bounded wildcard.

class BoundedWildcard

{
static void showXY(Coords<?> c)

{
System.out.println("X Y Coordinates:");
for(int i=0; i < c.coords.length; i++) System.out.println(c.coords[i].x
+ " " + c.coords[i].y);
System.out.println();

}
static void showXYZ(Coords<? extends ThreeD> c) {

System.out.println("X Y Z Coordinates:");
for(int i=0; i < c.coords.length; i++) System.out.println(c.coords[i].x
+ " " + c.coords[i].y + " " +
c.coords[i].z);
System.out.println();

}
static void showAll(Coords<? extends FourD> c)

{
System.out.println("X Y Z T Coordinates:");
for(int i=0; i < c.coords.length; i++) System.out.println(c.coords[i].x
+ " " + c.coords[i].y + " " +

Rohini college of Engineering and technology

73
CS8392 Object Oriented Programming

c.coords[i].z + " " +

c.coords[i].t);
System.out.println();

}
public static void main(String args[])

{
TwoD td[] = {
new TwoD(0, 0),
new TwoD(7, 9),
new TwoD(18, 4),
new TwoD(-1, -23)

};
Coords<TwoD> tdlocs = new Coords<TwoD>(td);
System.out.println("Contents of tdlocs.");
showXY(tdlocs); // OK, is a TwoD
// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD
// Now, create some FourD objects.
FourD fd[] = {
new FourD(1, 2, 3, 4),

new FourD(6, 8, 14, 8),
new FourD(22, 9, 4, 9),
new FourD(3, -2, -23, 17)
};
Coords<FourD> fdlocs = new Coords<FourD>(fd);
System.out.println("Contents of fdlocs.");
// These are all OK.
showXY(fdlocs);
showXYZ(fdlocs);
showAll(fdlocs);

}
}

Output:
Contents of tdlocs.
X Y Coordinates:
0 0
7 9

Rohini college of Engineering and technology

74
CS8392 Object Oriented Programming

18 4
-1 -23

Contents of fdlocs.
X Y Coordinates:
1 2
6 8
22 9
3 -2

X Y Z Coordinates:

1 2 3
6 8 14
22 9 4
3 -2 -23

X Y Z T Coordinates:
1 2 3 4
6 8 14 8
22 9 4 9
3 -2 -23 17

4.11.4 Inheritance and Generics
A generic class can act as a superclass or be a subclass.

4.11.4.1 Using a Generic Superclass
in a generic hierarchy, any type arguments needed by a generic
superclass must be passed up the hierarchy by all subclasses.

Example Program:
// A subclass can add its own type parameters.
class Gen<T> {
T ob; // declare an object of type T
// Pass the constructor a reference to
// an object of type T.
Gen(T o)

{

Rohini college of Engineering and technology

75
CS8392 Object Oriented Programming

ob = o;

}
// Return ob.

T getob()

{
return ob;

}
}
// A subclass of Gen that defines a second

// type parameter, called V.
class Gen2<T, V> extends Gen<T>

{
V ob2;
Gen2(T o, V o2)

{
super(o);
ob2 = o2;

}
V getob2()

{
return ob2;

}
}
// Create an object of type Gen2.
class HierDemo

{
public static void main(String args[])

{
// Create a Gen2 object for String and Integer.
Gen2<String, Integer> x =

new Gen2<String, Integer>("Value is: ", 99);
System.out.print(x.getob());
System.out.println(x.getob2());

} }

Output:
Value is: 99

Rohini college of Engineering and technology

76
CS8392 Object Oriented Programming

4.11.4.2 A Generic Subclass

A subclass can add its own type parameters,if needed.

Example Program:
class NonGen

{
int num;
NonGen(int i)

{
num = i;

}
int getnum()

{
return num;

}
}
// A generic subclass.
class Gen<T> extends NonGen

{
T ob; // declare an object of type T
// Pass the constructor a reference to

// an object of type T.
Gen(T o, int i)

{
super(i);
ob = o;

}
// Return ob.
T getob()

{
return ob;

}
}
// Create a Gen object.
class HierDemo2

{
public static void main(String args[])

{

Rohini college of Engineering and technology

77
CS8392 Object Oriented Programming

// Create a Gen object for String.
Gen<String> w = new Gen<String>("Hello", 47);
System.out.print(w.getob() + " ");
System.out.println(w.getnum());

}
}

Output:
Hello 47

4.11.5 Overriding Methods in a Generic Clas
A method in a generic class can be overridden just like any other

method.

Example Program:
class Gen<T>

{
T ob; // declare an object of type T
// Pass the constructor a reference to
// an object of type T.
Gen(T o)

{
ob = o;

}
// Return ob.
T getob()

{
System.out.print("Gen's getob(): ");
return ob;

}
}
// A subclass of Gen that overrides getob().
class Gen2<T> extends Gen<T>

{
Gen2(T o)

{
super(o);

}
// Override getob().

Rohini college of Engineering and technology

78
CS8392 Object Oriented Programming

T getob()

{
System.out.print("Gen2's getob(): ");
return ob;

}
}
// Demonstrate generic method override.
class OverrideDemo

{

public static void main(String args[])

{
// Create a Gen object for Integers.
Gen<Integer> iOb = new Gen<Integer>(88);
// Create a Gen2 object for Integers.
Gen2<Integer> iOb2 = new Gen2<Integer>(99);
// Create a Gen2 object for Strings.
Gen2<String> strOb2 = new Gen2<String> ("Generics Test");
System.out.println(iOb.getob());
System.out.println(iOb2.getob());
System.out.println(strOb2.getob());

}
}
Output:
Gen's getob(): 88
Gen2's getob(): 99
Gen2's getob(): Generics Test

4.12 Restrictions and Limitations
There are a few restrictions that you need to keep in mind when using
generics. They involve creating objects of a type parameter, static

members, exceptions, and arrays.

4.12.1 Type Parameters Can’t Be Instantiated
It is not possible to create an instance of a type parameter. For
example, consider this class:

Example Program:
// Can't create an instance of T.

Rohini college of Engineering and technology

79
CS8392 Object Oriented Programming

class Gen<T>

{
T ob;
Gen()

{
ob = new T(); // Illegal!!!

}
}

Here, it is illegal to attempt to create an instance of T. The reason
should be easy to

understand: because T does not exist at run time, how would the
compiler know what type
of object to create?

4.12.2 Restrictions on Static Members
No static member can use a type parameter declared by the enclosing
class. For example,
both of the static members of this class are illegal:

Example Program:
class Wrong<T>

{
// Wrong, no static variables of type T.
static T ob;
// Wrong, no static method can use T.
static T getob()

{
return ob;

}
}

Although you can’t declare static members that use a type parameter
declared by the enclosing class, you can declare static generic
methods, which define their own type parameters

4.12.3 Generic Array Restrictions
There are two important generics restrictions that apply to arrays. First,
you cannot instantiate an array whose element type is a type
parameter. Second, you cannot create an array of typespecific generic

Rohini college of Engineering and technology

80
CS8392 Object Oriented Programming

references.

Example Program:
// Generics and arrays.
class Gen<T extends Number>

{
T ob;
T vals[]; // OK

Gen(T o, T[] nums)

{
ob = o;
// This statement is illegal.
// vals = new T[10]; // can't create an array of T
// But, this statement is OK.
vals = nums; // OK to assign reference to existent array

}
}
class GenArrays

{
public static void main(String args[])

{
Integer n[] = { 1, 2, 3, 4, 5 };
Gen<Integer> iOb = new Gen<Integer>(50, n);
// Can't create an array of type-specific generic references.
// Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!
// This is OK.
Gen<?> gens[] = new Gen<?>[10]; // OK

}
}

4.12.4 Generic Exception Restriction A generic class cannot extend
Throwable. This means that you cannot create generic exception
classes.

2 Marks Questions and Answers
1. Difference between multitasking and multithreading.

Multithreading Multitasking

Rohini college of Engineering and technology

81
CS8392 Object Oriented Programming

The system executes

multiple threads of the
same or different
processes at the same
time.

The system allows executing

multiple programs and tasks
at the same time

CPU has to switch
between multiple
threads to make it

CPU has to switch between
multiple programs so that
it appears that multiple

appear that all
are
simultaneously

threads
running

programs are
simultaneously.

running

Threads belonging to the
same process shares
the same memory and
resources as that of the
process.

Multitasking allocates
separate memory and
resources for each
process/program

2. What is thread?
A thread is a lightweight sub process, a smallest unit of processing.
It is a separate path of execution.

Threads are independent, if there occurs exception in one thread, it
doesn't affect other threads. It shares a common memory area.

3. Write the states of a thread.
During the life time of a thread, it enters into various states.
The states are

• Newborn State

• Runnable State

• Running State

• Blocked State

• Dead State

4. Draw the life cycle of thread.

Rohini college of Engineering and technology

82
CS8392 Object Oriented Programming

5. What is the role of Newborn State?

When we create a thread object, the thread is born and is said to be
newborn -state. In this state, we can do the following tasks

• Schedule a thread for running using start() method

• Kill a thread using stop() method

6. What is the role of Runnable State?
The runnable state means that the thread is ready for execution and

is waiting for the availability of the processor.The thread is waiting

in the queue for its execution.If all threads have equal priority,then

they are given time slots for execution in round-robin fashion,that

means first- come,first-serve manner.

7. Write down the role of Running State.
Running means that the thread is allotted with the processor for its
execution.The thread runs until higher priority thread comes.A
running thread may relinquish its control in one of the following
situations

8. Write down the role of Blocked State.
A thread is said to be blocked when it is prevented from entering into
the runnable state and subsequently the running state. This happens
when the thread is suspended, sleeping, or waiting in order to satisfy
certain requirements. A blocked thread is considered “not runnable”
but not dead and fully qualified to run again.

9. Write down the role of Dead State.

Rohini college of Engineering and technology

83
CS8392 Object Oriented Programming

Every thread has a life cycle. A running thread ends its life when it

has completed executing its run() method. It is a natural death. We
can kill it by sending the stop message to it at any state.

10. What are the ways of creating threads?
A new thread can be created in two ways

• You can implement the Runnable interface.
• You can extend the Thread class, itself.

11. What are the methods in Thread class?

Method Meaning

getName() Obtain a thread’s name.

getPriority() Obtain a thread’s priority.

isAlive() Determine if a thread is still
running.

join() Wait for a thread to
terminate.

run() Entry point for the thread.

sleep() Suspend a thread for a
period of time.

start() Start a thread by calling its
run method.

12. What is the difference between yielding and sleeping?
When a task invokes its yield() method, it returns to the ready
state. When a task invokes its sleep() method, it returns to the
waiting state.

13. Can I implement my own start() method?

The Thread start() method is not marked final, but should not be
overridden. This method contains the code that creates a new
executable thread and is very specialised. Your threaded application
should either pass a Runnable type to a new Thread, or extend
Thread and override the run() method.

14. How do you set the priority to a thread?
Each thread is assigned a priority. Based on the priority, the thread

Rohini college of Engineering and technology

84
CS8392 Object Oriented Programming

will be scheduled for running. The threads of the same priority are

given equal treatment by the Java scheduler, they share the
processor on a first come, first serve basis.
The thread is set with the priority, we can use setPriority() method.
Syntax:

ThreadName.setPriority(intNumber);
The intNumber is an integer value to which the thread’s priority is
set. The Thread class defines several priority constants:

MIN_PRORITY = 1
NORM_PRORITY = 5
MAX_PRORITY = 10

15. How to synchronize the threads in Java?
Synchronization in java is the capability to control the access of
multiple threads to any shared resource.
When we want to share the resource with multiple threads, we can
use the Java synchronization concept. So there is a need to
synchronize the action of multiple threads and make sure that only
one thread can access the resource at a given point in time. This is

implemented using a concept called monitors. Each object in Java
is associated with a monitor, which a thread can lock or unlock. Only
one thread at a time may hold a lock on a monitor.

16. Write the purpose of using synchronization in threads?

• To prevent thread interference

• To prevent consistency problem

17. What are the types of Thread Synchronization?

There are two types of thread synchronization mutual exclusive and
inter-thread communication.

1. Mutual Exclusive
1. Synchronized method.
2. Synchronized block.
3. static synchronization.

2. Cooperation (Inter-thread communication in java)

