
  

UNIT 2 

CONVECTION 

2.1. Convection Heat Transfer-Requirements 
 

The heat transfer by convection requires a solid-fluid interface, a temperature difference 

between the solid surface and the surrounding fluid and a motion of the fluid. The process of heat 

transfer by convection would occur when there is a movement of macro-particles of the fluid in 

space from a region of higher temperature to lower temperature. 

2.2. Convection Heat Transfer Mechanism 
 

Let us imagine a heated solid surface, say a plane wall at a temperature Tw placed in an 

atmosphere at temperature T , Fig. 2.1 Since all real fluids are viscous, the fluid particles 

adjacent to the solid surface will stick to the surface. The fluid particle at A, which is at a lower 

temperature, will receive heat energy from the plate by conduction. The internal energy of the 

particle would Increase and when the particle moves away from the solid surface (wall or plate) 

and collides with another fluid particle at B which is at the ambient temperature, it will transfer a 

part of its stored energy to B. And, the temperature of the fluid particle at B would increase. This 

way the heat energy is transferred from the heated plate to the surrounding fluid. Therefore the 

process of heat transfer by convection involves a combined action of heat conduction, energy 

storage and transfer of energy by mixing motion of fluid particles. 

Fig. 2.1 Principle of heat transfer by convection 
 

2.3. Free and Forced Convection 
 

When the mixing motion of the fluid particles is the result of the density difference 

caused by a temperature gradient, the process of heat transfer is called natural or free convection. 



  

When the mixing motion is created by an artificial means (by some external agent), the process 

of heat transfer is called forced convection Since the effectiveness of heat transfer by convection 

depends largely on the mixing motion of the fluid particles, it is essential to have a knowledge of 

the characteristics of fluid flow. 

2.4. Basic Difference between Laminar and Turbulent Flow 
 

In laminar or streamline flow, the fluid particles move in layers such that each fluid p 

article follows a smooth and continuous path. There is no macroscopic mixing of fluid particles 

between successive layers, and the order is maintained even when there is a turn around a comer 

or an obstacle is to be crossed. If a lime dependent fluctuating motion is observed indirections 

which are parallel and transverse to the main flow, i.e., there is a random macroscopic mixing of 

fluid particles across successive layers of fluid flow, the motion of the fluid is called' turbulent 

flow'. The path of a fluid particle would then be zigzag and irregular, but on a statistical basis, 

the overall motion of the macro particles would be regular and predictable. 

2.5. Formation of a Boundary Layer 
 

When a fluid flow, over a surface, irrespective of whether the flow is laminar or 

turbulent, the fluid particles adjacent to the solid surface will always stick to it and their velocity 

at the solid surface will be zero, because of the viscosity of the fluid. Due to the shearing action 

of one fluid layer over the adjacent layer moving at the faster rate, there would be a velocity 

gradient in a direction normal to the flow. 

Fig 2.2: sketch of a boundary layer on a wall 
 

Let us consider a two-dimensional flow of a real fluid about a solid (slender in cross- 

section) as shown in Fig. 2.2. Detailed investigations have revealed that the velocity of the fluid 



  

particles at the surface of the solid is zero. The transition from zero velocity at the surface of the 

solid to the free stream velocity at some distance away from the solid surface in the V-direction 

(normal to the direction of flow) takes place in a very thin layer called 'momentum or 

hydrodynamic boundary layer'. The flow field can thus be divided in two regions: 

( i) A very thin layer in t he vicinity 0 f t he body w here a velocity gradient normal to 

the direction of flow exists, the velocity gradient du/dy being large. In this thin region, even a 

very small Viscosity of the fluid exerts a substantial Influence and the shearing stress 

du/dy may assume large values. The thickness of the boundary layer is very small and 

decreases with decreasing viscosity. 

(ii) In the remaining region, no such large velocity gradients exist and the Influence of 

viscosity is unimportant. The flow can be considered frictionless and potential. 

2.6. Thermal Boundary Layer 
 

Since the heat transfer by convection involves the motion of fluid particles, we must 

superimpose the temperature field on the physical motion of fluid and the two fields are bound to 

interact. It is intuitively evident that the temperature distribution around a hot body in a fluid 

stream will often have the same character as the velocity distribution in the boundary layer flow. 

When a heated solid body IS placed in a fluid stream, the temperature of the fluid stream will 

also vary within a thin layer in the immediate neighborhood of the solid body. The variation in 

temperature of the fluid stream also takes place in a thin layer in the neighborhood of the body 

and is termed 'thermal boundary layer'. Fig. 2.3 shows the temperature profiles inside a thermal 

boundary layer. 

Fig2.3: The thermal boundary layer 
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2.7. Dimensionless Parameters and their Significance 
 

The following dimensionless parameters are significant in evaluating the convection 

heat transfer coefficient: 

(a) The Nusselt Number (Nu)-It is a dimensionless quantity defined as hL/ k, where h = 

convective heat transfer coefficient, L is the characteristic length and k is the thermal 

conductivity of the fluid The Nusselt number could be interpreted physically as the ratio of the 

temperature gradient in the fluid immediately in contact with the surface to a reference 

temperature gradient (Ts - T ) /L. The convective heat transfer coefficient can easily be obtained 

if the Nusselt number, the thermal conductivity of the fluid in that temperature range and the 

characteristic dimension of the object is known. 

Let us consider a hot flat plate (temperature Tw) placed in a free stream (temperature 

T < Tw). The temperature distribution is shown ill Fig. 2.4. Newton's Law of Cooling says that 

the rate of heat transfer per unit area by convection is given by 
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Fig. 2.4 Temperature distribution in a boundary layer: Nusselt modulus 
 

The heat transfer by convection involves conduction and mixing motion of fluid 

particles. At the solid fluid interface (y = 0), the heat flows by conduction only, and is given by 

kdT 
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dy 
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Since the magnitude of the temperature gradient in the fluid will remain the same, 

irrespective of the reference temperature, we can write dT = d(T - Tw) and by introducing a 

characteristic length dimension L to indicate the geometry of the object from which the heat 

flows, we get 
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hL dy y 0 

 

, and in dimensionless form, 
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(b) The Grashof Number (Gr)-In natural or free convection heat transfer, die motion of 

fluid particles is created due to buoyancy effects. The driving force for fluid motion is the body 

force arising from the temperature gradient. If a body with a constant wall temperature Tw is 

exposed to a qui scent ambient fluid  at T , the force per unit  volume can be written as 

g tw T where = mass density of the fluid, = volume coefficient of expansion and g is 

the acceleration due to gravity. 

Tw T 

d(Tw  T)/(Tw T ) 

d y/ L 
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The ratio of inertia force × Buoyancy force/(viscous force)2 can be written as 
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The magnitude of Grashof number indicates whether the flow is laminar or turbulent. If 

the Grashof number is greater than 109, the flow is turbulent and for Grashof number less than 

108, the flow is laminar. For 108 < Gr < 109, It is the transition range. 

(c) The Prandtl Number (Pr) - It is a dimensionless parameter defined as 
 

Pr = Cp / k / 
 

Where is the dynamic viscosity of the fluid, v = kinematic viscosity and = thermal 

diffusivity. 

This number assumes significance when both momentum and energy are propagated 

through the system. It is a physical parameter depending upon the properties of the medium It is 

a measure of the relative magnitudes of momentum and thermal diffusion in the fluid: That is, 

for Pr = I, the r ate of diffusion of momentum and energy are equal which means that t he 

calculated temperature and velocity fields will be Similar, the thickness of the momentum and 

thermal boundary layers will be equal. For Pr <<I (in case of liquid metals), the thickness of the 

thermal boundary layer will be much more than the thickness of the momentum boundary layer 

and vice versa. The product of Grashof and Prandtl number is called Rayleigh number. Or, Ra = 

Gr × Pr. 

2.8. Evaluation of Convective Heat Transfer Coefficient 
 

The convective heat transfer coefficient in free or natural convection can be evaluated 

by two methods: 

(a) Dimensional Analysis combined with experimental investigations 
 

(b) Analytical solution of momentum and energy equations 10 the boundary layer. 
 

Dimensional Analysis and Its Limitations 



  

Since the evaluation of convective heat transfer coefficient is quite complex, it is based 

on a combination of physical analysis and experimental studies. Experimental observations 

become necessary to study the influence of pertinent variables on the physical phenomena. 

Dimensional analysis is a mathematical technique used in reducing the number of 

experiments to a minimum by determining an empirical relation connecting the relevant 

variables and in grouping the variables together in terms of dimensionless numbers. And, the 

method can only be applied after the pertinent variables controlling t he phenomenon are 

Identified and expressed In terms of the primary dimensions. (Table 1.1) 

In natural convection heat transfer, the pertinent variables are: h, , k, , Cp, L, ( T), 

  and g. Buckingham 's method provides a systematic technique for arranging the variables in 

dimensionless numbers. It states that the number of dimensionless groups,   

describe a phenomenon involving 'n' variables is equal to the number of variables minus the 

number of primary dimensions 'm' in the problem. 

In SI system of units, the number of primary dimensions are 4 and the number of 

variables for free convection heat transfer phenomenon are 9 and therefore, we should expect (9 - 

4) = 5 dimensionless numbers. Since the dimension of the coefficient of volume expansion,  , is 

1 , one dimensionless number is obviously ( T). The remaining variables are written in a 

functional form: 

h, , k, ,Cp, L, g = 0. 

 
Since the number of primary dimensions is 4, we arbitrarily choose 4 independent 

variables as primary variables such that all the four dimensions are represented. The selected 

primary variables are: ,g, k. L Thus the dimensionless group, 
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Equating the powers of M, L, T, on both sides, we have 

a b 
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M : a + c + 1 = 0 } Upon solving them, 

L : -3a + b + c + d = 0 

T : -2b -3c -3 = 0 

: -c - 1 = 0 

 

 
 

and 1 = hL/k, the Nusselt number. 

The other dimensionless number 

 

 
Up on solving them, 

 

 
 

c = 1, b = a = 0 and d = 1. 

2= pagbkcLdCp = (ML-3)a (LT-2)b(MLT-3   -1)c(L)d(MT-1 1 ) = M0L0T0 0 Equating the 

powers of M,L,T and and upon solving, we get 
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By combining 3 with T , we have   5= T * 
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Therefore, the functional relationship is expressed as: 
 

Nu, Pr,Gr 0;Or, Nu 1 Gr Pr Const Gr Pr (2.1) 
 

and values of the constant and 'm' are determined experimentally. 
 

Table 2.1 gives the values of constants for use with Eq. (2.1) for isothermal surfaces. 

Cp 

m 



  

Table 2.1 Constants for use with Eq. 2.1 for Isothermal Surfaces 
 

Geometry Gr f 
pr f

 C m 

Vertical planes and cylinders 104 - 109 0.59 1/4 

 
109 - 1013 0.021 2/5 

 
109 - 1013 0.10 1/3 

Horizontal cylinders 0 - 10-5 0.4 0 

 
104 - 109 0.53 1/4 

 
109 - 1012 0.13 1/3 

 
1010 - 10-2 0.675 0.058 

 
10-2 - 102 1.02 0.148 

 
102 - 104 0.85 0.188 

 
104 - 107 0.48 1/4 

 
107 - 1012 0.125 1/3 

Upper surface of heated plates or 8 × 106 - 1011 0.15 1/3 

lower surface of cooled plates    

- do - 
2 × 104 - 8 × 106 

 

0.54 
 

1/4 

Lower surface of heated plates or 105 - 1011 
0.27 1/4 

upper surface of cooled plates    

Vertical cylinder height = diameter 
   

characteristic length = diameter    

Irregular solids, characteristic length 
104 - 106 0.775 0.21 

= distance the fluid particle travels in    

boundary layer 104 - 109 0.52 1/4 



  

Analytical Solution-Flow over a Heated Vertical Plate in Air 
 

Let us consider a heated vertical plate in air, shown in Fig. 2.5. The plate is maintained 

at uniform temperature Tw .The coordinates are chosen in such a way that x - is in the stream 

wise direction and y - is in the transverse direction. There will be a thin layer of fluid adjacent to 

the hot surface of the vertical plate within 

Fig. 2.5 Boundary layer on a heated vertical plate 
 

Which the variations in velocity and temperature would remain confined. The relative 

thickness of the momentum and the thermal boundary layer strongly depends upon the Prandtl 

number. Since in natural convection heat transfer, the motion of the fluid particles is caused by 

the temperature difference between the temperatures of the wall and the ambient fluid, the 

thickness of the two boundary layers are expected to be equal. When the temperature of the 

vertical plate is less than the fluid temperature, the boundary layer will form from top to bottom 

but the mathematical analysis will remain the same. 

The boundary layer will remain laminar upto a certain length of the plate (Gr < 108) and 

beyond which it will become turbulent (Gr > 109). In order to obtain the analytical solution, the 

integral approach, suggested by von-Karman is preferred. 

We choose a control volume ABCD, having a height H, length dx and unit thickness 

normal to the plane of paper, as shown in Fig. 25. We have: 

(b) Conservation of Mass: 
 

Mass of fluid entering through face AB = 
H 

mAB 0 
udy 
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Mass of fluid leaving face CD = m 
H 

udy 
0 

H 
udy dx 
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Mass of fluid entering the face DA = 
H 

udy dx 
0 

 

(ii) Conservation of Momentum: 
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Momentum entering face AB = 
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Momentum leaving face CD = 
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H u2dy dx 
0 0 

 

Net efflux of momentum in the + x-direction = 
H u2dy dx 
0 

 

The external forces acting on the control volume are: 
 

 

(a) Viscous force = 
 

dx acting in the ve x-direction 

y 0 

 

(b) Buoyant force approximated as 
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(2.2) 

 

because the value of the integrand between and H would be zero. 
 

(iii) Conservation of Energy: 

 

AB , convection + AD ,convection + BC ,conduction = CD convection 
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(2.3) 

 

The boundary conditions are: 
 

or, 

(2.3) 

Velocity profile Temperature profile 
 

u = 0 at y = 0 T = Tw at y = 0 

 

u = 0 at y = T = T at y = 1 

 
du/dy = 0 at y = dT/dy 0 at y = 1 

 

Since the equations (2.2) and (2.3) are coupled equations, it is essential that the 

functional form of both the velocity and temperature distribution are known in order to arrive at a 

solution. 

The functional relationships for velocity and temperature profiles which satisfy the 

above boundary conditions are assumed of the form: 

2 

1 (2.4) 
 
 

Where u* is a fictitious velocity which is a function of x; and 
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(2.5) 

 
 

After the Eqs. (5.4) and (5.5) are inserted in Eqs. (5.2) and (5.3) and the operations are 

performed (details of the solution are given in Chapman, A.J. Heat Transfer, Macmillan 

Company, New York), we get the expression for boundary layer thickness as: 

/ x 3.93Pr 
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Where Gr, is the local Grashof number = g x3 Tw T / 2 

k dT 

C dy 

u y 
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The heat transfer coefficient can be evaluated from: 

 

h Tw T 
y 0 

 

Using Eq. (5.5) which gives the temperature distribution, we have 

h = 2k/ or, hx/k = Nux= 2x/ 

The non-dimensional equation for the heat transfer coefficient is 

Nux= 0.508 Pr0.5 (0.952 + Pr)-0.25 Gr0.25 

 

 

 

 

 
 

(2.7) 

 
 The average heat transfer coefficient, h L h dx 4 / 3h 

 
 

 

 
NuL= 0.677 Pr0.5 (0.952 + Pr)-0.25 Gr0.25 

0 x x  L 
 

(2.8) 
 

Limitations of Analytical Solution: Except for the analytical solution for flow over a flat 

plate, experimental measurements are required to evaluate the heat transfer coefficient. Since in 

free convection systems, the velocity at the surface of the wall and at the edge of the boundary 

layer is zero and its magnitude within the boundary layer is so small. It is very difficult to 

measure them. Therefore, velocity measurements require hydrogen-bubble technique or sensitive 

hot wire anemometers. The temperature field measurement is obtained by interferometer. 

 

The characteristic length used in evaluating the Nusselt number and Grashof number for 

vertical surfaces is the height of the surface. If the boundary layer thickness is not to large 

compared with the diameter of the cylinder, the convective heat transfer coefficient can be 

evaluated by the equation used for vertical plane surfaces. That is, when D/ L 25 / GrL 
0.25 

 

Example 2.1 A large vertical flat plate 3 m high and 2 m wide is maintained at 75°C 

and is exposed to atmosphere at 25°C. Calculate the rate of heat transfer. 

Solution: The physical properties of air are evaluated at the mean temperature. i.e. T = 

(75 + 25)/2 = 50°C 

From the data book, the values are: 

q w 
k 

dT 

dy 

1 

L 



  

hA 

1.088 2 9.81 1 3 
3 

50 

= 1.088 kg/m3; Cp = 1.00 kJ/kg.K; 

 
= 1.96 × 10-5 Pa-s k = 0.028 W/mK. 

 
Pr = Cp/k = 1.96 × 10-5 × 1.0 × 103 /0.028 = 0.7 

 

1 1 
 

T 323 

 
Gr = 2g T L3 / 2 

 

 

= 
2
 

323 1.96 10 5 
 

= 12.62 × 1010 

Gr.Pr = 8.834 × 1010 

Since Gr.Pr lies between 109 and 1013 

We have from Table 2.1 

Nu 
hL 

k 
0.1 Gr.Pr 1/ 3 441.64 

 

h = 441.64 × 0.028/3 = 4.122 W/m2K 
 

Q T 4.122   6   50 1236.6W 
 

We can also compute the boundary layer thickness at x = 3m 

 
2x 2   3 

1.4 cm 

Nux 441.64 
 

Example 2.2 A vertical flat plate at 90°C. 0.6 m long and 0.3 m wide, rests in air at 

30°C. Estimate the rate of heat transfer from the plate. If the plate is immersed in water at 30°C. 

Calculate the rate of heat transfer 

Solution: (a) Plate in Air: Properties of air at mean temperature 60°C 

Pr = 0.7, k = 0.02864 W/ mK, v = 19.036 × 10-6 m2/s 

Gr = 9.81 × (90 30)(0.6)3/ [333 (19.036 × 10-6)2] 
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L 

L 

= 1.054 × 109; Gr × Pr 1.054 ×109 × 0.7 = 7.37 × 108 < 109 

From Table 5.1: for Gr × Pr < 109, Nu = 0.59 (Gr. Pr)1/4 

h = 0.02864 × 0.59 (7.37 × 108)1/4/0.6 = 4.64 W/m2K 

The boundary layer thickness, = 2 k/h = 2 × 0.02864/4.64 = 1.23 cm 

and = hA ( T ) = 4.64 × (2 × 0.6 × 0.3) × 60 = 100 W. 

Using Eq (2.8). Nu = 0.677 (0.7)0.5 (0.952 +0.7)0.25 (1.054 ×109)0.25, 

 
Which gives h = 4.297 W/m2K and heat transfer rate, 92.81 W 

 
Churchill and Chu have demonstrated that the following relations fit very well with 

experimental data for all Prandtl numbers. 

For RaL < 109, Nu = 0.68 + (0.67 Ra 0.25)/ [1 + (0.492/Pr)9/16]4/9) (5.9) 

RaL> 109, Nu = 0.825 + (0.387 Ra 1/6)/[1 + (0.492/Pr)9/16]8/27 (5.10) 

Using Eq (5.9): Nu = 0.68 + [0.67(7.37 × 108)0.25] / [1 + (0.492/0.7)9/16]4/9 

 
= 58.277 and h = 4.07 W /m2k; = 87.9 W 

 
(b) Plate in Water: Properties of water from the Table 

Pr = 3.01, 2 g Cp/ k = 6.48 × 1010; 

Gr.Pr = 2 g Cp L
3( T)/ k = 6.48 × 1010 × (0.6)3 × 60 = 8.4 × 1011 

 
Using Eq (5.10): Nu = 0.825 + [0.387 (8.4 ×1011)1/6]/ [1+ (0.492/3.01)9/16)]8/27 = 89.48 

which gives h = 97.533 and Q = 2.107 kW. 
 

2.9. Modified Grashof Number 
 

When a surface is being heated by an external source like solar radiation incident on a 

wall, a surface heated by an electric heater or a wall near a furnace, there is a uniform heat flux 

distribution along the surface. The wall surface will not be an isothermal one. Extensive 

experiments have been performed by many research workers for free convection from vertical 

and inclined surfaces to water under constant heat flux conditions. Since the temperature 

difference ( T) is not known beforehand, the Grashof number is modified by multiplying it by 



  

q 

q 

x 

x 

x 

x 

Nusselt number. That is, 

 
Gr* = Grx. Nux = (g T / 2 ) × (hx/k) = g x4 q/k 2 (2.11) 

Where q is the wall heat flux in Wm2. (q = h ( T )) 

It has been observed that the boundary layer remains lam mar when the modified 

Rayleigh number, Ra* = Gr* 12 and fully turbulent flow appears for Ra* > 

1014. The local heat transfer coefficient can be calculated from: 

 
q constant and 105 < Gr* <1011: Nux = 0.60 ( Gr* . Pr)0.2 (2.12) 

x x 

 

q constant and 2 × 1013< Gr* < 1016 : Nux= 0.17 ( Gr* . Pr)0.25 (2.13) 
x x 

 

Although these results are based on experiments for water, they are applicable to air as 

well. The physical properties are to be evaluated at the local film temperature. 

Example 2.3           

high and 3 m wide. Assuming that the wall does not transfer energy to the inside surface and all 

the incident energy is lost by free convection to the ambient air at 30oe, calculate the average 

temperature of the wall 

Solution: Since the surface temperature of the wall is not known, we assume a value for 

h = 7 W/m2 K. 

T =  / h = 700/7 = 100oC and the film temperature = (30 + 130) /2 = 80oC 

The properties of air at 273 +80 = 353 are:   = 1/353, Pr = 0.697 

k = 0.03 W /mK,    = 20.76 ×10-6 m2/s. 

Modified Grashof number, Gr* = 9.81. (1/353)· (3)4 × 700/[0.03 ×(20.76 × 10-6 )2] = 1.15 × 1014 

From Eq. (2.13), h = (k/x) (0.17) ( Gr* Pr)0.25 

= (0.03/3) (0.17) (1.15 × 1014 × 0.697)1/4 

= 5.087 W/m2K, a different value from the assumed value. 

Second Trial:    T =  / h = 700/5.087 = 137.66 and film temperature 



  

x 

x 

= 98.8°C 
 

The properties of air at (273 + 98.8) °C are:  =1/372, k = 0.0318 W/mK 

Pr = 0.693, v = 23.3 × 10-6 m2/s 

Gr* = 9.81. (1/372)· (3)4 × 700/ [0.318(23.3 × 10-6)2] = 8.6 × 1013 
 

Using Eq (2.13), h = (k/x) (0.17) ( Gr* Pr)1/4 = 5.015 W/m2k, an acceptable value. In 
 

turbulent heat transfer by convection, Eq. (5.13) tells us that the local heat transfer coefficient hx 

does not vary with x and therefore, the average and local heat transfer coefficients are the same. 

 

2 Laminar Flow Forced Convection Heat Transfer 

2.1Forced Convection Heat Transfer Principles 
 

The mechanism of heat transfer by convection requires mixing of one portion of fluid 

with another portion due to gross movement of the mass of the fluid. The transfer of heat energy 

from one fluid particle or a molecule to another one is still by conduction but the energy is 

transported from one point in space to another by the displacement of fluid. 

When the motion of fluid is created by the imposition of external forces in the form of 

pressure differences, the process 

of fluid particles may be either laminar or turbulent and that depends upon the relative magnitude 

of inertia and viscous forces, determined by the dimensionless parameter Reynolds number. In 

free convection, the velocity of fluid particle is very small in comparison with the velocity of 

fluid particles in forced convection, whether laminar or turbulent. In forced convection heat 

transfer, Gr/Re2<< 1, in free convection heat transfer, GrRe2>>1 and we have combined free and 

forced convection when Gr/Re2 1. 

2.2. Methods for Determining Heat Transfer Coefficient 
 

The convective heat transfer coefficient in forced flow can be evaluated by: (a) 

Dimensional Analysis combined with experiments; 

(b) Reynolds Analogy an analogy between heat and momentum transfer; (c) 

Analytical Methods exact and approximate analyses of boundary layer equations. 

2.3. Method of Dimensional Analysis 



  

As pointed out in Chapter 5, dimensional analysis does not yield equations which can be 

solved. It simply combines the pertinent variables into non-dimensional numbers which facilitate 

the interpretation and extend the range of application of experimental data. The relevant 

variables for forced convection heat transfer phenomenon whether laminar or turbulent, are 

(b)   The properties of the fluid   density p, specific heat capacity Cp, dynamic or 

absolute viscosity , thermal conductivity k. 

(ii) The properties of flow flow velocity Y, and the characteristic dimension of the 

system L. 

As such, the convective heat transfer coefficient, h, is written as h = f (   , V, L,     , Cp, 

k) = 0 (5.14) 

Since there are seven variables and four primary dimensions, we would expect three 

dimensionless numbers. As before, we choose four independent or core variables as   ,V, L, k, 

and calculate the dimensionless numbers by applying Buckingham method: 

1 = aVbLcKdh ML 3 LT 1 L c MLT 3 1 
d
 MT 3 1 

 

= MoLoTo o 

 

Equating the powers of M, L, T and on both sides, we get 

M : a + d + 1 = O 

L : - 3a + b + c + d = 0 
 

T : - b 3d 3 = 0 By solving them, we have 
 

: - d 1= 0. D = -1, a = 0, b = 0, c = 1. 

 

Therefore, 1= hL/k is the Nusselt number. 
 

2 = a VbLcKd ML 3 LT 1 L c MLT 3 1 
d
 ML 1T 1 

 

= MoLoTo o 

Equating the powers of M, L, T and on both sides, we get 

a b 

a b 



  

M : a + d +1 = 0 
 

L : - 3a + b + c + d = 1 = 0 

T : - b 3d 1 = 0 

: - d = 0. 
 

By solving them, d = 0, b = - 1, a = - 1, c = - 1 

 

and 2 /  VL;or,  3 
2  

 

(Reynolds number is a flow parameter of greatest significance. It is the ratio of inertia 

forces to viscous forces and is of prime importance to ascertain the conditions under which a 

flow is laminar or turbulent. It also compares one flow with another provided the corresponding 

length and velocities are comparable in two flows. There would be a similarity in flow between 

two flows when the Reynolds numbers are equal and the geometrical similarities are taken into 

consideration.) 
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Equating the powers of M, L, T, on both Sides, we get 
 

M : a + d = 0; L : - 3a + b + c + d + 2 = 0 

T : - b 3d 2 = 0;  : - d 1 = 0 

By solving them, 
 

d =- 1,a = l, b = l, c = l, 
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5 is Prandtl number. 

1 VL 

Cp 

a b 



  

Therefore, the functional relationship is expressed as: 
 

Nu = f (Re, Pr); or Nu = C Rem Prn (5.15) 

Where the values of c, m and n are determined experimentally. 

2.4. Principles of Reynolds Analogy 
 

Reynolds was the first person to observe that there exists a similarity between the 

exchange of momentum and the exchange of heat energy in laminar motion and for that reason it 

  der the motion of a fluid where the fluid is 

flowing over a plane wall. The X-coordinate is measured parallel to the surface and the V- 

coordinate is measured normal to it. Since all fluids are real and viscous, there would be a thin 

layer, called momentum boundary layer, in the vicinity of the wall where a velocity gradient 

normal to the direction of flow exists. When the temperature of the surface of the wall is 

different than the temperature of the fluid stream, there would also be a thin layer, called thermal 

boundary layer, where there is a variation in temperature normal to the direction of flow. Fig. 2.6 

depicts the velocity distribution and temperature profile for the laminar motion of the fluid 

flowing past a plane wall. 

Fig. 2.6 velocity distribution and temperature profile for laminar motion of the fluid 

over a plane surface 

 
In a two-dimensional flow, the shearing stress is given by 

 

w 

y 0 

du 

dy 



  

d k 

Q 

Q/ C 

h 

and the rate of heat transfer per unit area is given by 
Q w T

 

A du 

 
For Pr = Cp/k = 1, we have k/ = Cp and therefore, we can write after separating the 

variables, 

 

du dT 
A wCp 

(5.16) 

 

Assuming that Q and w are constant at any station x, we integrate equation (5.16) 

between the limits: u = 0 when T = Tw , and u = U when T = T , and we get, 

A w   p U Tw T 

 

Since by definition, Q / A x Tw T , and w Cfx U 2 / 2, 

 

Where Cfx , is the skin friction coefficient at the station x. We have 
 

Cfx /2 = hx/ (Cp   U   ) (5.17) 

 

Since hx / Cp U hx.x / k / U k / .Cp Nux / Re.Pr , 

 

Nux / Re.Pr Cfx / 2 Stantonnumer,St. (5.18) 

Equation (5.18) is satisfactory for gases in which Pr is approximately equal to unity. 

Colburn has shown that Eq. (5.18) can also be used for fluids having Prandtl numbers ranging 

from 0.6 to about 50 if it is modified in accordance with experirnental results. 

 
Or, Nux 

.Pr2 / 3 
 

St  Pr2/3 C   / 2 
  

 
(5.19) 

Rex Pr 
x fx 

 

Eq. (5.19) expresses the relation between fluid friction and heat transfer for laminar 

flow over a plane wall. The heat transfer coefficient could thus be determined by making 

measurements of the frictional drag on a plate under conditions in which no heat transfer is 

involved. 



  

Example 2.4 Glycerine at 35°C flows over a 30cm by 3Ocm flat plate at a velocity of 

1.25 m/s. The drag force is measured as 9.8 N (both Side of the plate). Calculate the heat transfer 

for such a flow system. 

Solution: From tables, the properties of glycerine at 35°C are: 
 

= 1256 kg/m3, Cp = 2.5 kJ/kgK, = 0.28 kg/m-s, k = 0.286 W/mK, Pr = 2.4 Re= 

VL/ = 1256 × 1.25 × 0.30/0.28 = 1682.14, a laminar flow.* 

Average shear stress on one side of the plate = drag force/area 
 

= 9.8/(2 × 0.3 × 0.3) = 54.4 
 

and shear stress = C f U2/2 

 
The average skin friction coefficient, Cr/ 2 = 

U2 

 

= 54.4/( 1256 ×1.25 × 1.25) = 0.0277 
 

From Reynolds analogy, Cf /2 = St. Pr 2/3 

or, h = Cp U × Cf/2 × Pr -2/3 = 
1256 2.5 1.25   0.0277 

=59.8 kW/m2K. 

2.45 
0.667 

 

 

 
 

Assumptions 
 

As pointed out earlier, when the motion of the fluid is caused by the imposition of 

external forces, such as pressure differences, and the fluid flows over a solid surface, at a 

temperature different from the temperature of the fluid, the mechanism of heat transfer is called 

coefficient would require the temperature distribution in the flow field surrounding the body. 

That is, the theoretical analysis would require the use of the equation of motion of the viscous 

fluid flowing over the body along with the application of the principles of conservation of mass 

and energy in order to relate the heat energy that is convected away by the fluid from the solid 

surface. 

For the sake of simplicity, we will consider the motion of the fluid in 2 space 



  

AD BC u 

AB CD v 

dimension, and a steady flow. Further, the fluid properties like viscosity, density, specific heat, 

etc are constant in the flow field, the viscous shear forces m the Y direction is negligible and 

there are no variations in pressure also in the Y direction. 

2.6. Derivation of the Equation of Continuity Conservation of Mass 
 

We choose a control volume within the laminar boundary layer as shown in Fig. 6.2. 

The mass will enter the control volume from the left and bottom face and will leave the control 

volume from the right and top face. As such, for unit depth in the Z-direction, 

 
m udy ;  m 

 

 
m vdx ; m 

u 
.dx dy; 

dx 

 

u 
.dy dx; 

dy 
 

For steady flow conditions, the net efflux of mass from the control volume is zero, 

therefore, 



  

 
 

Fig. 2.7 a differential control volume within the boundary layer for laminar flow over a 

plane wall 

udy xdx udy 
u 

dxdy vdx 
v 

.dxdy 

x x 
 

or, u / x v y 0, the equation of continuity. (2.20) 

 

Concept of Critical Thickness of Insulation 
 

The addition of insulation at the outside surface of small pipes may not reduce the rate 

of heat transfer. When an insulation is added on the outer surface of a bare pipe, its outer radius, 

r0 increases and this increases the thermal resistance due to conduction logarithmically whereas t 

he thermal resistance to heat flow due to fluid film on the outer surface decreases linearly with 

increasing radius, r0. Since the total thermal resistance is proportional to the sum of these two 

resistances, the rate of heat flow may not decrease as insulation is added to the bare pipe. 

Fig. 2.7 shows a plot of heat loss against the insulation radius for two different cases. 

For small pipes or wires, the radius rl may be less than re and in that case, addition of insulation 

to the bare pipe will increase the heat loss until the critical radius is reached. Further addition of 

insulation will decrease the heat loss rate from this peak value. The insulation thickness (r* rl) 

must be added to reduce the heat loss below the uninsulated rate. If the outer pipe radius rl is 

greater than the critical radius re any insulation added will decrease the heat loss. 



  

2 

2.7 Expression for Critical Thickness of Insulation for a Cylindrical Pipe 
 

Let us consider a pipe, outer radius rl as shown in Fig. 2.18. An insulation is added such 

that   the   outermost    radius    is    r    a    variable    and    the    insulation    thickness    is 

(r rI). We assume that the thermal conductivity, k, for the insulating material is very small in 

comparison with the thermal conductivity of the pipe material and as such the temperature T1, at 

the inside surface of the insulation is constant. It is further assumed that both h and k are 

constant. The rate of heat flow, per unit length of pipe, through the insulation is then, 

Q / L T1 T / ln r / r1 / k   1/ hr , where T is the ambient temperature. 

 

 
 

Fig 2.8 Critical thickness for pipe insulation 



  

Q / L 

Q / L 
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hr 

 
 

Fig 2.9 critical thickness of insulation for a pipe 
 

d 
An optimum value of the heat loss is found by setting 0 . 

dr 
 

 

or, 
 

 

or, 1/ kr 1/ hr2 0 and r = rc = k/h (2.21) 

 

where rc 
 

If we evaluate the second derivative of (Q/L) at r = rc, we get 

k r 2k 2 
In 

hr r 
1 2 1 

hr 

r rc 

2 T1 T   1  

1 k 
r In 

r 

kr   h  r1 
r rc 

= 2 T1 T h2 / k / 1 1n rc / r1 

 
Which is always a negative quantity. Thus, the optimum radius, rc = k/h will always 

give a maximum heal loss and not a minimum. 

2.8. An Expression for the Critical Thickness of Insulation for a Spherical Shell 
 

Let us consider a spherical shell having an outer radius r1 and the temperature at that 

surface T1 . Insulation is added such that the outermost radius of the shell is r, a variable. The 

thermal conductivity of the insulating material, k, and the convective heat transfer coefficient at 

d 2 T1 T 1/ kr   1/ hr2 

dr 
0 

ln r / r1 / k   1/ hr2 

d2 Q / L 

dr2 

2 



  

Q 

Q 

Q 

Q 

T1 T 

r r1 / 4 k r r1 1/ h 4 r2 

d 

dr 
0 

4 T1 

r 

T 1/ kr2 2 / hr3 

r1 / k r r1 1/ hr 
2   2 

the outer surface, h, and the ambient temperature T is constant. The rate of heat transfer 

through the insulation on the spherical shell is given by 

 

 

 

which gives, 1/Kr2 - 2/hr3 = 0; 

or r = rc = 2 k/h (2.22) 
 

2.9 Heat and Mass Transfer 
 

Example 2.5 Hot gases at 175°C flow through a metal pipe (outer diameter 8 cm). The 

convective heat transfer coefficient at the outside surface of the insulation (k = 0.18 W /mK) IS 

2.6 W m1K and the ambient temperature IS 25°C. Calculate the insulation thickness such that 

the heat loss is less than the uninsulated case. 

Solution: (a) Pipe without Insulation 
 

Neglecting the thermal resistance of the pipe wall and due to the inside convective heat 

transfer coefficient, the temperature of the pipe surface would be 175°C. 

/L = h ×2 r (T1-T   ) = 2.6 ×2×3.14×.04{175-25) = 98 W/m (b) Pipe Insulated. 

Outermost Radius, r* 

 

/L = 98 = (T -T ) / 
1 

 

 

or 
150 

= 08841n (r*/4)+6.12/r*; which gives r* = 13.5 cm. 
98 

 

Therefore, the insulation thickness must be more than 9.5 cm. 
 

(Since the critical thickness of insulation is rc = k/h = 0.18/2.6 = 6.92 cm, and is greater 

than the radius of the bare pipe, the required insulation thickness must give a radius greater than 

the critical radius.) 

1n r * / 4 

2 0.18 

100 

2.6 2 r * 



  

Q 

Q 

Q 

Q 

1n 11/ 7 

2 0.18 2.6 

1 

2   0.11 

If the outer radius of the pipe was more than the critical radius, any addition of 

insulating material will reduce the rate of heat transfer. Let us assume that the outer radius of the 

pipe is 7 cm (r > rc) 

/L, without insulation = hA ( T) = 2.6 × 2 ×3.142 × 0.07× (175-25) 

 
= 171.55 W/m 

 

By adding 4 cm thick insulation, outermost radius = 7.0 + 4.0 = 11.0 cm. 
 

 

and /L= (175 - 25)/ =133.58W/m. 
 
 

Reduction in heat loss = 
171.55 133.58 

= 0.22 or 22%. 
171.55 

 

Example 2.6 An electric conductor 1.5 mm in diameter at a surface temperature of 

80°C is being cooled in air at 25°C. The convective heat transfer coefficient from the conductor 

surface is 16W/m2K. Calculate the surface temperature of the conductor when it is covered with 

a layer of rubber insulation (2 mm thick, k = 0.15 W /mK) assuming that the conductor carries 

the same current and the convective heat transfer coefficient is also the same. Also calculate the 

increase in the current carrying capacity of the conductor when the surface temperature of the 

conductor remains at 80°C. 

Solution: When there is no insulation, 

 
/ L = hA ( T) = 16 × 2 × 3.142 × 0.75 × 10 - 3 = 4.147 W/m 

 
When the insulation is provided, the outermost radius = 0.75 + 2 = 2.75 mm 

 
/ L = 4.147 = (T1-25) / 

 

or T1 = 45.71oC 

i.e., the temperature at the outer surface of the wire decreases because the insulation 

adds a resistance. 

The critical radius of insulation, r c = k/h = 0.15/16 = 9.375 mm 
 

i.e., when an insulation of thickness (9.375 - 0.75) = 8.625 mm is added, the heat 

1n 2.75/ 0.75 1000 

2 0.15 16   2 2.75 



  

Q 

Q 

1n 9.375 / 0.75 1000 

2 0.15 16   2 9.375 

transfer rate would be the maximum and the conductor can carry more current. The heat transfer 

rate with outermost radius equal to rc = 9.375 mm 

 

/L = (80 - 25) / =14.7 W/m 
 

The rate of heat transfer is proportional to (current)2, the new current I2 would be: 

I2/I1 = (14.7 / 4.147)1/2 = 1.883 

or, the current carrying capacity can be increased 1.883 times. But the maximum current 

capacity of wire would be limited by the permissible temperature at the centre of the wire. 

The surface temperature of the conductor when the outermost radius with insulation is 

equal to the critical radius, is given by 

 
/L = 4.147 = (T-25/ 

 

 

or T = 40.83°C. 

1n 9.375/ 0.75 1000 

2   3.142   0.15 16 2   3.142   9.375 


