3.3 ANALYSIS OF THREE HINGED PARABOLIC ARCHES

Three hinged arch

The three hinged arches are statically determinate structures in which the horizontal movement at the support is prevented to a certain extent or it is wholly prevented. This type of arch has two hinges at the end supports and also an supplementary intermediate hinge at the crown.

Fig. 3.3.1

Three hinged parabolic arches

An arch which is hinged at three points and whose axis represents a parabolic shape is known as a three hinged parabolic arch.

Fig. 3.3.2 Three hinged parabolic arches

Analysis of 3-hinged arches

It is the process of determining external reactions at the support and internal quantities such as normal thrust, shear and bending moment at any section in the arch.

Procedure to find reactions at the supports

Step 1. Sketch the arch with the loads and reactions at the support.
Apply equilibrium conditions namely $\square \mathrm{F}_{\mathrm{X}} \square 0, \square \mathrm{Fy} \square 0$ and $\square \mathrm{M} \square 0$
Apply the condition that BM about the hinge at the crown is zero (Moment of all the forces either to the left or to the right of the crown).

Example:

A 3hinged arch of span 40 m and rise 8 m carries concentrated load of 200 KN and 150 KN at distance of 8 m and 16 m from the left end and an UDL of $50 \mathrm{~K} / \mathrm{N}$ on the right half of the span.

Fig. 3.3.3

SOLUTION

a) vertical reactions VA and VB

Taking moment about A

$$
\begin{array}{cl}
(200 \mathrm{X} 8)+(150 \mathrm{X} 16)+(50 \mathrm{X} 20 \mathrm{X}(20+20 / 2)]-\mathrm{VB} \text { X40 } & =0 \\
1600+2400+30000-\mathrm{VBX} 40 & =0
\end{array}
$$

VB $=850 \mathrm{KN}$

$$
\begin{array}{r}
\text { Total load }=\mathrm{VA}+\mathrm{VB} \\
200+150+(50 \mathrm{X} 20)=850+\mathrm{VA}
\end{array}
$$

$$
\mathrm{VA}=500 \mathrm{KN}
$$

b)Horizontal thrust (H)

Taking moment about C
HX8-VA(20)+(200X12)+(150X4) =0
$8 \mathrm{H}-4000+2400+600=0$
$\mathrm{H} \quad=325 \mathrm{KN}$

Example:

A parabolic 3 hinged arch carries loads as shown in fig. Determine the resultant reactions at supports. Find the bending moment normal thrust and radial shear at D,5m from A . what is the max bending.

Fig. 3.3.4

SOLUTION

Taking moment about A

$$
\begin{aligned}
(20 \times 3)+(30 \times 7)+[25 \times 10 \times(10+10 / 2)]-\mathrm{VB} \times 20 & =0 \\
\mathrm{VB} & =201 \mathrm{KN} \\
\mathrm{VA} & =99 \mathrm{KN}
\end{aligned}
$$

Horizontal pull

$$
\begin{aligned}
(\mathrm{H} \times 5)+(20 \times 7)+(30 \times 3)-\mathrm{VA} \times 10 & =0 \\
5 \mathrm{H}-140+90-990 & =0 \\
\mathrm{H} & =152 \mathrm{KN}
\end{aligned}
$$

Resultant Reaction (RA and RB)

$$
\begin{aligned}
\mathrm{RA} & =\sqrt{ } \mathrm{H}^{2}+\mathrm{VA}^{2} \\
& =\sqrt{ } 152^{2}+99^{2} \\
& =181.39 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RB} & =\sqrt{ } \mathrm{H}^{2}+\mathrm{VB}^{2} \\
& =\sqrt{ } 152^{2}+201^{2} \\
& =252 \mathrm{KN}
\end{aligned}
$$

$$
\emptyset \quad=\tan ^{-1} \mathrm{VA} / \mathrm{H}
$$

$$
=\tan ^{-1} 99 / 152
$$

$$
\text { =330 } 4^{\prime} 36^{\prime \prime} .6
$$

$\emptyset \quad=\tan ^{-1} \mathrm{VB} / \mathrm{H}$
$=\tan ^{-1} 201 / 152$
$=52^{\circ} 54^{\prime} 9^{\prime \prime} .86$

Bending moment, Normal thrust, radial SF at D

BM at D

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{D}} & =4 \mathrm{r} / \mathrm{l}^{2} \mathrm{x}(\mathrm{l}-\mathrm{x}) \\
& =4 \times 5 / 20^{\wedge} 2 \times 5(20-5) \\
& =3.75 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BMD} & =+\mathrm{VA} \times 5+{ }^{-} \mathrm{H}_{\mathrm{YD}}+-20 \times 2 \\
& =495+^{-} 570+40 \\
& =-11.5 \mathrm{KNm}
\end{aligned}
$$

Slope of the arch at D

$$
\begin{aligned}
\text { Slope } & =\tan ^{-1}\left[4 \mathrm{r} / \mathrm{l}^{2}(1-2 \mathrm{x})\right] \\
& =\tan ^{-1}\left[4 \times 5 / 20^{\wedge} 2(20-2 \times 5)\right] \\
& =26^{\circ} 33^{\prime} 55^{\prime \prime} .18
\end{aligned}
$$

Normal thrust

$$
\begin{array}{ll}
\mathrm{P} & =\mathrm{Vx} \sin +\mathrm{H} \cos \\
\mathrm{Vx} & =\text { net beam shear force } \\
\mathrm{Vx} & =\mathrm{VA}-20 \\
& =99-20 \\
& =79 \mathrm{KN} \\
\mathrm{P} & =79 \sin 26^{\circ} 33^{\prime} 55^{\prime \prime} .18+152 \cos 26^{\circ} 33^{\prime} 55^{\prime \prime} .18 \\
& =171.28 \mathrm{KN}
\end{array}
$$

Radial shear force

$$
\begin{aligned}
\mathrm{F} \quad & =\mathrm{vx} \cos -\mathrm{H} \sin \\
& =79 \cos -152 \sin \\
& =2.683 \mathrm{KN}
\end{aligned}
$$

Max BM in CB

$$
\begin{aligned}
\mathrm{BMx} & =\mathrm{VBx}-\mathrm{Wx}{ }^{2} / 2-\mathrm{Hyx} \\
\mathrm{Yx} & =4 \mathrm{r} / 1^{2} \mathrm{x}(1-\mathrm{x}) \\
& =4 \times 5 / 20^{\wedge} 2 \mathrm{Xx}(20-\mathrm{x}) \\
& =0.05 \mathrm{x}(20-\mathrm{x}) \\
\mathrm{Mx} & =201 \mathrm{x}-25 \times \mathrm{x}^{2} / 2-152(0.05 \mathrm{x}(20-\mathrm{x})) \\
& =201 \mathrm{x}-12.5 \mathrm{x}^{2} 7.6 \mathrm{x}(20-\mathrm{x}) \\
& =201 \mathrm{x}-12.5 \mathrm{x}^{2}-152 \mathrm{x}+7.6 \mathrm{x}^{2} \\
\mathrm{Mx} & =49 \mathrm{x}-4.9 \mathrm{x}^{2}
\end{aligned}
$$

Diff W.r to x

$\mathrm{dM} / \mathrm{dX} \quad=49-9.8 \mathrm{x}$

BM to be max

$$
\begin{aligned}
9.8 \mathrm{x}-49 & =0 \\
\mathrm{x} & =5 \mathrm{~m} \\
\mathrm{Mx} & =49(\mathrm{x} 5)-4.9\left(5^{2}\right) \\
& =122.5 \mathrm{KN}
\end{aligned}
$$

Example:

A symmetrical three hinged parabolic arch of span 40 m and rise 8 m carries a UDL of $30 \mathrm{KN} / \mathrm{m}$, over the left half of the span. The hinges are provide at the support and at the centre of the arch. Calculation the reaction at the support.als calculate the bending moment, radial shear and normal thrust a distance of 10 m from the left support.

Fig. 3.3.5

Solution

Vertical Components VA and VB

Taking moment about A

$$
\begin{aligned}
\mathrm{VB} \times 40-30 \times 20^{2} / 2 & =0 \\
\mathrm{VB} & =150 \mathrm{KN} \\
\mathrm{VA} & =\text { total load }-\mathrm{VB} \\
& =30 \times 20-150 \\
& =450 \mathrm{KN}
\end{aligned}
$$

Horizontal components

$$
\mathrm{H} \quad=375 \mathrm{KN}
$$

Resultant Reaction RA,RB

$$
\begin{aligned}
\mathrm{RA} & =\sqrt{ } \mathrm{H}^{2}+\mathrm{VA}^{2} \\
& =\sqrt{ } 450^{2}+375^{2} \\
& =585.71 \mathrm{KN} \\
\mathrm{RB} & =\sqrt{ } \mathrm{H}^{2}+\mathrm{VB}^{2} \\
& =\sqrt{ } 150^{2}+375^{2} \\
& =403.89 \mathrm{KN}
\end{aligned}
$$

Bending moment at 10 m from A

$$
\begin{aligned}
Y & =4 \mathrm{r} / 1^{2} \mathrm{x}(1-\mathrm{x}) \\
& =4 \times 8 / 40^{2} \times 10(40-10) \\
& =6 \mathrm{~m}
\end{aligned}
$$

Bending moment at 10m

$$
\begin{aligned}
& =\mathrm{VA}(10)-\mathrm{HA}(\mathrm{Y})-30 \times 10 \times 10 / 2 \\
& =450(10)-(375 \mathrm{y})-30(50) \\
& =3000-375 \mathrm{Y} \\
& =3000-375(6) \\
& =750 \mathrm{KNm}
\end{aligned}
$$

Radial shear force at $\mathbf{x}=\mathbf{1 0 m}$

$$
\mathrm{R} \quad=\mathrm{V} x \cos \theta-\mathrm{H} \sin \theta
$$

$$
\begin{aligned}
\mathrm{Vx} & =\mathrm{VA}-30 \times 10 \\
& =450-300 \\
& =150 \mathrm{KN}
\end{aligned}
$$

slope at D

$$
\begin{array}{cl}
\theta & =\tan ^{-1}\left[4 \mathrm{r} / 1^{2}(1-2 \mathrm{x})\right] \\
\theta & =\tan ^{-1}\left[4 \times 8 / 40^{\wedge} 2(40-2 \times 10)\right] \\
=21^{\circ} 48^{\prime} &
\end{array}
$$

$$
\begin{aligned}
\mathrm{R} \quad & =150 \cos 21^{\circ} 48^{\prime}-375 \sin 21^{\circ} 48^{\prime} \\
& =0
\end{aligned}
$$

Normal thrust

$$
\begin{aligned}
\mathrm{P} & =\mathrm{Vx} \sin \theta+\mathrm{H} \cos \theta \\
& =150 \sin 21^{\circ} 48^{\prime}+375 \cos 21^{\circ} 48^{\prime} \\
& =403.89 \mathrm{KN}
\end{aligned}
$$

Example:

A three hinged parabolic arch of 40 m span has abutments at unequal levels. The highest point of the arch is 4 m above the left support and 9 m above the right support abutments. The arch is subjected to an UDL of 15 KNm over its entire horizontal span. Find the horizontal thrust and bending moment at the point 8 m from the left support.

Fig. 3.3.6

Solution

Reaction A,B and H

Find 11, 12

$$
\begin{aligned}
11 / 12 & =\sqrt{ } \mathrm{r} 1 / \mathrm{r} 2 \\
11 / 40-11 & =\sqrt{ } 4 / 9 \\
11 & =(40-11) \times 2 / 3 \\
11 & =16 \mathrm{~m} \\
12 & =40-11 \\
& =40-16 \\
& =24 \mathrm{~m}
\end{aligned}
$$

considering left slab of C

$$
\begin{align*}
\text { VA(16)-4H-15×16×16/2 } & =0 \\
16 \mathrm{VA}-4 \mathrm{H}-1920 & =0 \\
4 \mathrm{VA}-\mathrm{H}-480 & =0 \tag{1}
\end{align*}
$$

\qquad

Considering the right slab of C

$$
\begin{align*}
-\mathrm{VB}(24)+\mathrm{H}(9)+15 \times 24 \times 24 / 2 & =0 \\
-24 \mathrm{VB}+9 \mathrm{H}+4320 & =0 \\
-8 \mathrm{VB}+3 \mathrm{H}+1440 & =0 \tag{2}
\end{align*}
$$

\qquad

$$
\begin{align*}
\mathrm{VA}+\mathrm{VB} & =600 \\
\mathrm{VB} & =600-\mathrm{VA}
\end{align*}
$$

Sub 3 in 2

$$
\begin{align*}
-8(600-V A)+3 H+1440 & =0 \\
8 V A-4800+3 H+1440 & =0 \\
8 V A+3 H-3360 & =0 \tag{4}
\end{align*}
$$

\qquad
$1 \& 4$ solve

$$
\begin{aligned}
4 \mathrm{VA}-\mathrm{H}-480 & =0 \\
4 \mathrm{VA}-480-480 & =0 \\
\mathrm{VA} & =240 \mathrm{KN} \\
\mathrm{VB} & =360 \mathrm{KN}
\end{aligned}
$$

Bending moment $x=8 m$

$$
\mathrm{BMx} \quad=\mathrm{VA}(8)-15 \times 8 \times 8 / 2-\mathrm{Hy}
$$

Y	$=4 \mathrm{r} / \mathrm{l}^{2} \mathrm{x}(1-\mathrm{x})$
Y	$=4 \times 4 /(2 \times 16)^{2} \times 8(2 \times 16-8)$
Y	$=3 \mathrm{~m}$
$\mathrm{BM} \quad$	$=240 \times 8-15 \times 32-480 \times 3$
	$=0$

$=0$

Radial shear

$$
\mathrm{R} \quad=\mathrm{V} x \cos \theta-\mathrm{H} \sin \theta
$$

$$
\begin{aligned}
\mathrm{Vx} & =\mathrm{VA}-(15 \times 8) \\
& =240-(15 \times 8) \\
& =120 \mathrm{KN}
\end{aligned}
$$

$$
\theta \quad=\tan ^{-1}\left[4 \mathrm{r} / \mathrm{l}^{2}(1-2 \mathrm{x})\right]
$$

$$
\theta \quad=\tan ^{-1}\left[4 \times 4 /(2 \times 16)^{2}(32-2 \times 8)\right]
$$

$$
=14^{\circ} 2^{\prime}
$$

$\mathrm{F} \quad=120 \cos 14^{\circ} 2^{\prime}-480 \sin 14^{\circ} 2^{\prime}$
F $=0$

Normal thrust

$$
\begin{aligned}
\mathrm{P}_{\mathrm{N}} & =\mathrm{Vx} \sin \theta+\mathrm{H} \cos \theta \\
& =120 \sin 14^{\circ} 2^{\prime}+480 \cos 14^{\circ} 2^{\prime} \\
& =494.77 \mathrm{KN}
\end{aligned}
$$

Example:

A three hinge arch is circular 25 m in span with a central rise of 5 m .It is loaded with a concentration load of 10 KN at 7.5 m from the left hand hinge. Find the horizontal thrust, reaction at each end hinge bending moment under the load.

Fig. 3.3.7

solution

Vertical reaction VA and VB

Taking moment about A

$$
\begin{aligned}
\mathrm{VB} \times 25-10 \times 7.5 & =0 \\
\mathrm{VB} & =3 \mathrm{KN} \\
\mathrm{VA} & =7 \mathrm{KN}
\end{aligned}
$$

Horizontal thrust

$$
\begin{aligned}
\mathrm{VB} \times 12.5-\mathrm{H} \times 5 & =0 \\
3 \times 12.5-\mathrm{H}(5) & =0 \\
\mathrm{H} & =7.5 \mathrm{KN}
\end{aligned}
$$

Reaction RA and RB

$$
\begin{aligned}
\mathrm{RA} & =\sqrt{ } \mathrm{H}^{2}+\mathrm{VA}^{2} \\
& =\sqrt{ } 7^{2}+7.5^{2} \\
& =10.26 \mathrm{KN} \\
\mathrm{RB} & =\sqrt{ } \mathrm{VB}^{2}+\mathrm{H}^{2} \\
& =\sqrt{ } 3^{2}+7.5^{2} \\
& =8.08 \mathrm{KN}
\end{aligned}
$$

Bending moment under the load

BMD =VA(7.50)-Hy

Find y

$$
\begin{array}{cl}
1 / 12 \times 1 / 2 & =5(2 \mathrm{R}-5) \\
12.5 \times 12.5 & =5(2 \mathrm{R}-5) \\
\mathrm{R} & =18.125 \mathrm{~m}
\end{array}
$$

Fig. 3.3.8
$R^{2}=(R-Y c+y)^{2}+x^{2}$
$18.125^{2}=(18.125-5+y)^{2}+5^{2}$
$303.515=(13.125+\mathrm{Y})^{2}$
$17.421=13.125+y$

$$
\mathrm{Y} \quad=4.3 \mathrm{~m}
$$

BMD $\quad=7(7.5)-7.5(4.3)$
$=20.25 \mathrm{KNm}$

