UNITV

BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

PROBLEMS BASED ON TWO DIMENSIONAL POISSON'S EQUATIONS

Solve the POISSON'S equation $m{u}_{xx} + m{u}_{yy} = -81xy$, $m{0} < x < 1$, 0 < y < 1 Given that

$$u(0, y) = 0$$
; $u(1, y) = 100$,

$$u(x,0) = 0$$
 , $u(x,1) = 100$ and $h = \frac{1}{3}$

Solution:

Here $h=\frac{1}{3}$

The standard five point formula for the given equation is

$$u_{i-1,j} + u_{i+1,j} + u_{i,j+1} + u_{i,j-1} - 4u_i, j = h^2 f(ih, jh) = h^2 [-81(ih, jh)] = h^4 (-81)ij = -ij \dots (i)$$

For
$$u_1(i=1,j=2)$$
,.(i) gives $0+u_2+u_3+100-4u_1=-2$

$$-4u_1+u_2+u_3=-102$$
.....(ii)

For
$$u_2(i=2, j=2)$$
, (i) gives $u_1 + 100 + u_4 + 100 - 4u_2 = -4$

$$u_1 - 4u_2 + u_4 = -204$$
(iii)

For
$$u_3(i=1,j=1)$$
,.(i) gives $0+u_4+0+u_1-4u_3=-1$

$$u_1 - 4u_3 + u_4 = -1$$
....(iv)

For
$$u_4(i=2,j=1)$$
,.(i) gives $u_3+100+u_2-4u_4=-2$

$$u_2 + u_3 - 4u_4 = -102$$
....(v)

/					
	0	100	100	100	
		U1	U2		
	0			100	
		U3	U4		
	0	0	0	100	
		GINE	1000		Χ

Subtracting from (v) from (ii) $-4u_1 + 4u_4 = 0$

$$\therefore u_1 = u_4$$

Then (iii) becomes $2u_1-4u_2=-204$ and (iv) becomes $2u_1-4u_3=-1$

Now (4)× (ii) + (vi) gives
$$-14u_1 + 4u_3 = -612$$

$$(vii) + (viii) gives - 12u_1 = -613$$

Thus
$$u_1 = \frac{613}{12} = 51.0833 = u_4$$

From (vi),
$$u_2 = \frac{1}{2}(u_1 + 102) = 76.5477$$

From (vii),
$$u_3 = \frac{1}{2} \left(u_1 + \frac{1}{2} \right) = 25.7916$$

2. Solve the equation $\nabla^2 u = -10(x^2+y^2+10)$ over the square with sides x=0=y, x=3=y with u=0 on the boundary and mesh length h=1

Solution: Here h=1

The standard five point formula for the given equation is

For
$$u_1(i=1,j=2)$$
,.(i) gives $0+u_2+0+u_3-4u_1=-10(1+4+10)$

For
$$u_2(i=2,j=2)$$
,.(i) gives $u_2=\frac{1}{4}(u_1+u_4+180)\dots\dots\dots\dots\dots\dots$ (iii)

For
$$u_3(i=1,j=1)$$
,.(i) gives $u_3=\frac{1}{4}(u_1+u_4+120)\dots\dots\dots\dots\dots$ (iv)

For
$$u_4(i=2,j=1)$$
,.(i) gives
$$u_4=\frac{1}{4}(u_2+u_3+150)\ldots\ldots\ldots\ldots\ldots(ii)$$

Equations (ii) and (iii) show that $u_4=u_1$ Thus the above equations reduces to

$$u_1 = \frac{1}{4}(u_2 + u_3 + 150)$$

$$u_2 = \frac{1}{4}(u_2 + 90)$$

$$u_3 = \frac{1}{4}(u_1 + 60)$$

Now let us solve these equations by Gauss Seidal method

First iteration : Starting from the approximations $u_2=0$, $u_3=0$ we obtain

Then
$$u_2^{(1)}=rac{1}{2}(37.5+90)pprox 64$$
 $u_3^{(1)}=37.5$ $u_4^{(1)}=37.5$ $u_3^{(1)}=rac{1}{2}(37.5+60)pprox 49$

Second iteration:

$$u_1^{(2)} = \frac{1}{2}(64 + 49 + 150) = 66$$

Then $u_2^{(2)} = \frac{1}{2}(66 + 90) \approx 78$

$$0B5ERVE$$
 OPTIMIZE OU $u_3^{(2)} = \frac{1}{2}(66 + 60) \approx 63$

Third iteration:

$$u_1^{(3)}=rac{1}{2}(78+63+150)pprox73$$
 Then $u_2^{(3)}=rac{1}{2}(73+90)pprox78$ $u_3^{(3)}=rac{1}{2}(73+60)pprox67$

Fourth iteration:

$$u_1^{(4)}=\frac{1}{2}(82+67+150)=75$$
 Then $u_2^{(4)}=\frac{1}{2}(75+90)\approx 82.5$
$$u_3^{(4)}=\frac{1}{2}(75+60)\approx 67.5$$

Fifth iteration:

