
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

PYTHON IDENTIFIERS:

 Identifiers are names for entities in a program such as class, variables and functions etc.

Rules for defining Identifiers:

 Identifiers can be composed of uppercase, lowercase letters, underscore and digits bur

should start only with an alphabet or an underscore.

 Identifiers can be a combination of lowercase letters (a to z) or uppercase letters (A to Z)

or digits or an underscore.

 Identifiers cannot start with digit

 Keywords cannot be used as identifiers.

 Only (_) underscore special symbol can be used.

Valid Identifiers: sum total _ab_ add_1

Invalid Identifies: 1x x+y if

VARIABLES

 A variable is nothing but a reserved memory location to store values. A variable in a

program gives data to the computer.

Ex:

>>>b=20

>>>print(b)

PYTHON INDENTATION

Python uses indentation. Block of code starts with indentation and ends with the

unintended line. Four whitespace character is used for indentation ans is preferred over tabs.

Ex:

x=1

if x==1:

print(“x is 1”)

Result:

x is 1

EXPRESSIONS

 An Expression is a combination of values, variables and operators.

Ex:

>>>10+20

12

STATEMENTS

 A Statement is an instruction that a python interpreter can execute.IN python enf of a

statement is marked by a newline character.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

c=a+b

Multiline statement can be used in single line using semicolon(;)

>>a=1;b=10;c=a +b

Ex:

>>>b=20

>>>print(b)

>>>print(“\”Hello\””)

Difference between a Statement and an Expression

A statement is a complete line of code that performs some action, while an expression is

any section of the code that evaluates to a value. Expressions can be combined ―horizontally

into larger expressions using operators, while statements can only be combined vertically by

writing one after another, or with block constructs. Every expression can be used as a statement,

but most statements cannot be used as expressions

TUPLE ASSIGNMENTS

 Tuple Assignment means assigning a tuple value into another tuple.

Ex:

 t=(‘Hello’,’hi’)

>>>m,n=t

>>>print(m)  Hello

>>>print(n)  hi

>>>print(t)  Hello,hi

 In order to interchange the values of the two tuples the following method is used.

>>>a=(‘1’,’4’)

>>>b=(‘10’,’15’)

>>>a,b=b,a

>>>print(a,b)

((‘10’,’15’), (‘1’,’4’))

COMMENTS

 Comments are non-executable statements which explain what program does. There are

two ways to represent a comment.

 Single Line Comment

 Begins with # hash symbol

Ex:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

>>>print(“Hello world”) # prints the string

 Multi Line Comment

 Multi line comment begins with a double quote and a single quote and ends with the

same

Ex:

>>>”’This is a multi line comment’”

OPERATORS:

 Operators are the construct which can manipulate the value of operands.

Eg: 4+5=9

 Where 4, 5, 9 are operand

 + is Addition Operator

 = is Assignment Operator

Types of Operator:

1. Arithmetic Operator

2. Comparison Operator (or) Relational Operator

3. Assignment Operator

4. Logical Operator

5. Bitwise Operator

6. Membership Operator

7. Identity Operator

1. Arithmetic Operator

 It provides some Arithmetic operators which perform some arithmetic operations

Consider the values of a=10, b=20 for the following table.

 Operator Meaning Syntax Description

+ Addition a+b It adds and gives the value 30

- Subtraction a-b It subtracts and gives the value -10

* Multiplication a*b It multiplies and gives the value 200

/ Division a/b It divides and gives the value 0.5

% Modulo a%b It divides and return the remainder 0

** Exponent a**b It performs the power and return 1020

// Floor a//b It divides and returns the least quotient

Example Program:

1.Write a Python Program with all arithmetic operators

>>>num1 = int(input('Enter First number: '))

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

>>>num2 = int(input('Enter Second number '))

>>>add = num1 + num2

>>>dif = num1 - num2

>>>mul = num1 * num2

>>>div = num1 / num2

>>>modulus = num1 % num2

>>>power = num1 ** num2

>>>floor_div = num1 // num2

>>>print('Sum of ',num1 ,'and' ,num2 ,'is :',add)

>>>print('Difference of ',num1 ,'and' ,num2 ,'is :',dif)

>>>print('Product of' ,num1 ,'and' ,num2 ,'is :',mul)

>>>print('Division of ',num1 ,'and' ,num2 ,'is :',div)

>>>print('Modulus of ',num1 ,'and' ,num2 ,'is :',modulus)

>>>print('Exponent of ',num1 ,'and' ,num2 ,'is :',power)

>>>print('Floor Division of ',num1 ,'and' ,num2 ,'is :',floor_div)

Output:

>>>

Enter First number: 10

Enter Second number 20

Sum of 10 and 20 is : 30

Difference of 10 and 20 is : -10

Product of 10 and 20 is : 200

Division of 10 and 20 is : 0.5

Modulus of 10 and 20 is : 10

Exponent of 10 and 20 is : 100000000000000000000

Floor Division of 10 and 20 is : 0

>>>

2. Comparison Operator (or) Relational Operator

 These operators compare the values and it returns either True or False according to the

condition. Consider the values of a=10, b=20 for the following table.

Operator Syntax Meaning Description

== a==b Equal to It returns false

!= a!=b Not Equal to It returns true

> a>b Greater than It returns false

< a<b Lesser than It returns true

>= a>=b Greater than or Equal to It returns false

<= a<=b Lesser than or Equal to It returns true

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

3. Assignment Operator

 Assignment operators are used to hold a value of an evaluated expression and used for

assigning the value of right operand to the left operand.

Consider the values of a=10, b=20 for the following table.

Operator Syntax Meaning Description

= a=b a=b It assigns the value of b to a.

+= a+=b a=a+b It adds the value of a and b and assign it to a.
- = a-=b a=a-b It subtract the value of a and b and assign it to a.

= a=b a=a*b It multiplies the value of a and b and assign it to a.

/= a/=b a=a/b It divides the value of a and b and assign it to a.

%= a%=b a=a%b
It divides the value of a and b and assign the

remainder to a.

= a=b a=a**b
It takes ‘a’ as base value and ‘b’ as its power and

assign the answer to a.

//= a//=b a=a//b
It divides the value of a and b and takes the least

quotient and assign it to a.

4. Logical Operator

 Logical Operators are used to combine two or more condition and perform logical

operations using Logical AND, Logical OR, Logical Not.

Consider the values of a=10, b=20 for the following table.

Operator Example Description

AND if(a<b and a!=b) Both Conditions are true

OR if(a<b or a!=b) Anyone of the condition should be true

NOT not (a<b)
The condition returns true but not

operator returns false

5. Bitwise Operator

 Bitwise Operator works on bits and performs bit by bit operation.

Consider the values of a=60, b=13 for the following table.

Operator Syntax Example Description

&
Binary AND

a&b= 12
It do the and operation

between two operations

|
Binary OR

a|b= 61
It do the or operation between

two operations

~
Binary Ones

Complement
~a=61

It do the not operation

between two operations

<< Binary Left Shift <<a It do the left shift operation

>> Binary Right Shift >>a It do the right shift operation

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

A B A&B A|B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

1. Write a Python Program with all Bitwise Operator

a = 10 # 10 = 0000 1010

b = 20 # 20 = 0001 0100

c = 0

c = a & b; # 0 = 0000 0000

print ("Line 1 - Value of c is ", c)

c = a | b; # 30 = 0001 1110

print ("Line 2 - Value of c is ", c)

c = ~a; # -11 = 0000 1011

print ("Line 3 - Value of c is ", c)

c = a << 2; # 40 = 0011 1000

print ("Line 4 - Value of c is ", c)

c = a >> 2; # 2 = 0000 0010

print ("Line 5 - Value of c is ", c)

Output:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is -61

Line 4 - Value of c is 240

Line 5 - Value of c is 15

6. Membership Operator

 Membership Operator test for membership in a sequence such as strings, lists or tuples.

Consider the values of a=10, b=[10,20,30,40,50] for the following table.

Operator Syntax Example Description

in
value in String or

List or Tuple
a in b returns True

If the value is ‘in’ the list then

it returns True, else False

not in
value not in String

or List or Tuple
a not in b returns False

If the value is ‘not in’ the list

then it returns True, else False

Example:

x=’python programming’

print(‘program’ not in x)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

print(‘program‘ in x)

print(‘ Program‘ in x)

Output:

False

True

False

7. Identity Operator

 Identity Operators compare the memory locations of two objects.

Consider the values of a=10, b=20 for the following table.

Operator Syntax Example Description

is variable 1 is variable 2 a is b returns False

If the variable 1 value is pointed

to the same object of variable 2

value then it returns True, else

False

is not
variable 1 is not

variable 2

a is not b returns

False

If the variable 1 value is not

pointed to the same object of

variable 2 value then it returns

True, else False

Example:

x1=7

y1=7

x2=’welcome’

y2=’Welcome’

print (x1 is y1)

print (x2 is y2)

print(x2 is not y2)

Output:

True

False

True

PRECEDENCE OF PYTHON OPERATORS

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

The combination of values, variables, operators and function calls is termed as an

expression. Python interpreter can evaluate a valid expression. When an expression contains

more than one operator, the order of evaluation depends on the Precedence of operations.

For example, Multiplication has higher precedence than Subtraction.

>>> 20 – 5*3

5

But we can change this order using Parentheses () as it has higher precedence.

>>> (20 - 5) *3

45

The operator precedence in Python are listed in the following table.

Table :Operator precedence rule in Python

S. No Operators Description

1. () Parentheses

2. ** Exponent

3. +x, -x, ~x Unary plus, Unary minus, Bitwise NOT

4. *, /, //, % Multiplication, Division, Floor division, Modulus

5. +, - Addition, Subtraction

6. <<, >> Bitwise shift operators

7. & Bitwise AND

8. ^ Bitwise XOR

9. | Bitwise OR

10. ==, !=, >, >=, <, <=,
is, is not, in, not in Comparison, Identity, Membership

operators

11. not Logical NOT

12. and Logical AND

13. or Logical OR

ASSOCIATIVITY OF PYTHON OPERATORS

If more than one operator exists in the same group. These operators have the same

precedence. When two operators have the same precedence, associativity helps to determine

which the order of operations. Associativity is the order in which an expression is evaluated that

has multiple operator of the same precedence. Almost all the operators have left-to-right

associativity. For example, multiplication and floor division have the same precedence. Hence, if

both of them are present in an expression, left one evaluates first.

Example:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

>>> 10 * 7 // 3

23

>>> 10 * (7//3)

20

>>> (10 * 7)//3

23

10 * 7 // 3 is equivalent to (10 * 7)//3.

Exponent operator ** has right-to-left associativity in Python.

>>> 5 ** 2 ** 3

390625

>>> (5** 2) **3

15625

>>> 5 **(2 **3)

390625

2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).

PRECEDANCE OF ARITHMETIC OPERATORS

Precedence Operator Description

1 **, () Exponent, Inside Parenthesis

2 /, *, %, // Division, Multiplication, Modulo, Floor

3 +, - Addition, Subtraction

