
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables, and control

variables for synchronization among the processors. The communications between the tasks in

multiprocessor systems take place through two main modes:

Message passing systems:

 This allows multiple processes to read and write data to the message queue without

being connected to each other.

 Messages are stored on the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most

operating systems.

Shared memory systems:

 The shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other.

 Communication among processors takes place through shared data variables, and

control variables for synchronization among the processors.

 Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

 When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

a) Message Passing Model b) Shared Memory Model

Fig : Inter-process communication models

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables, and control

variables for synchronization among the processors. The communications between the tasks in

multiprocessor systems take place through two main modes:

Message passing systems:

 This allows multiple processes to read and write data to the message queue without

being connected to each other.

 Messages are stored on the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most

operating systems.

Shared memory systems:

 The shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other.

 Communication among processors takes place through shared data variables, and

control variables for synchronization among the processors.

 Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

 When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

a) Message Passing Model b) Shared Memory Model

Fig : Inter-process communication models

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables, and control

variables for synchronization among the processors. The communications between the tasks in

multiprocessor systems take place through two main modes:

Message passing systems:

 This allows multiple processes to read and write data to the message queue without

being connected to each other.

 Messages are stored on the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most

operating systems.

Shared memory systems:

 The shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other.

 Communication among processors takes place through shared data variables, and

control variables for synchronization among the processors.

 Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

 When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

a) Message Passing Model b) Shared Memory Model

Fig : Inter-process communication models



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Differences between message passing and shared memory models

Message Passing Distributed Shared Memory

Services Offered:

Variables have to

from one process,

unmarshalled into other

receiving process.

be marshalled

transmitted and

variables at the

The processes share variables directly, so no

marshalling and unmarshalling. Shared

variables can be named, stored and accessed in

DSM.

Processes can communicate with other

processes. They can be protected from one

another by having private address spaces.

Here, a process does not have private address

space. So one process can alter the execution

of other.

This technique can be used in heterogeneous

computers.

This cannot

computers.

be used to heterogeneous

Synchronization between processes is through

message passing primitives.

Synchronization is through locks and

semaphores.

Processes communicating via message passing

must execute at the same time.

Processes communicating through DSM

may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and

therefore the programmer is always aware of

whether a particular operation is in-process or

involves the expense of communication.

Any particular read or update may or may not

involve communication by the underlying

runtime support.

Emulating message-passing on a shared memory system (MP → SM)

 The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

 Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are

synchronized.

 Specifically, a separate location can be reserved as the mailbox for each ordered pair

of processes.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Differences between message passing and shared memory models

Message Passing Distributed Shared Memory

Services Offered:

Variables have to

from one process,

unmarshalled into other

receiving process.

be marshalled

transmitted and

variables at the

The processes share variables directly, so no

marshalling and unmarshalling. Shared

variables can be named, stored and accessed in

DSM.

Processes can communicate with other

processes. They can be protected from one

another by having private address spaces.

Here, a process does not have private address

space. So one process can alter the execution

of other.

This technique can be used in heterogeneous

computers.

This cannot

computers.

be used to heterogeneous

Synchronization between processes is through

message passing primitives.

Synchronization is through locks and

semaphores.

Processes communicating via message passing

must execute at the same time.

Processes communicating through DSM

may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and

therefore the programmer is always aware of

whether a particular operation is in-process or

involves the expense of communication.

Any particular read or update may or may not

involve communication by the underlying

runtime support.

Emulating message-passing on a shared memory system (MP → SM)

 The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

 Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are

synchronized.

 Specifically, a separate location can be reserved as the mailbox for each ordered pair

of processes.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Differences between message passing and shared memory models

Message Passing Distributed Shared Memory

Services Offered:

Variables have to

from one process,

unmarshalled into other

receiving process.

be marshalled

transmitted and

variables at the

The processes share variables directly, so no

marshalling and unmarshalling. Shared

variables can be named, stored and accessed in

DSM.

Processes can communicate with other

processes. They can be protected from one

another by having private address spaces.

Here, a process does not have private address

space. So one process can alter the execution

of other.

This technique can be used in heterogeneous

computers.

This cannot

computers.

be used to heterogeneous

Synchronization between processes is through

message passing primitives.

Synchronization is through locks and

semaphores.

Processes communicating via message passing

must execute at the same time.

Processes communicating through DSM

may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and

therefore the programmer is always aware of

whether a particular operation is in-process or

involves the expense of communication.

Any particular read or update may or may not

involve communication by the underlying

runtime support.

Emulating message-passing on a shared memory system (MP → SM)

 The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

 Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are

synchronized.

 Specifically, a separate location can be reserved as the mailbox for each ordered pair

of processes.



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Emulating shared memory on a message-passing system (SM → MP)

 This is also implemented through read and write operations. Each shared location

can be modeled as a separate process. Write to a shared location is emulated by

sending an update message tothe corresponding owner process and read operation to

a shared location is emulated by sending a query message to the owner process.

 This emulation is expensive as the processes have to gain access to other process

memory location. The latencies involved in read and write operations may be high

even when using shared memory emulation because the read and write operations

are implemented by using network-wide communication.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Emulating shared memory on a message-passing system (SM → MP)

 This is also implemented through read and write operations. Each shared location

can be modeled as a separate process. Write to a shared location is emulated by

sending an update message tothe corresponding owner process and read operation to

a shared location is emulated by sending a query message to the owner process.

 This emulation is expensive as the processes have to gain access to other process

memory location. The latencies involved in read and write operations may be high

even when using shared memory emulation because the read and write operations

are implemented by using network-wide communication.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Emulating shared memory on a message-passing system (SM → MP)

 This is also implemented through read and write operations. Each shared location

can be modeled as a separate process. Write to a shared location is emulated by

sending an update message tothe corresponding owner process and read operation to

a shared location is emulated by sending a query message to the owner process.

 This emulation is expensive as the processes have to gain access to other process

memory location. The latencies involved in read and write operations may be high

even when using shared memory emulation because the read and write operations

are implemented by using network-wide communication.


