
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

RANDOM ACCESS FILE 

A random-access data file enables you to read or write information anywhere in the file. 

Random access allows you to access any record directly at any position in the file. Individual 

records of a random-access file are normally fixed in length and may be accessed directly without 

searching through other records. This makes random-access files appropriate for airline reservation 

systems, banking systems, point-of-sale systems, and other kinds of transaction- processing 

systems. 

Random access is sometimes called direct access. C supports the following functions for 

random access file processing of a binary file: 

1. fseek() 

2. ftell() 

3. rewind() 

4. fgetpos() 

5. fsetpos() 

fseek() 

This function is used for setting the file pointer at the specified byte. On successful 

operation, fseek() returns zero. Otherwise it returns a non-zero value. 

Syntax: 

int fseek(FILE *fp, long displacement, int origin); 

Here, 

fp – file pointer 

displacement – denotes the number of bytes which are moved backward or 

forward in the file. It can be positive or negative. 

origin – denotes the position relative to which the displacement takes place. It takes one 

of the following three values. 

Constant Value Position 

SEEK_SET 0 Beginning of file 

SEEK_CURRENT 1 Current position 

SEEK_END 2 End of file 

Origin field in fseek() function 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

ftell() 

This function returns the current position of the file position pointer. The value is counted from 

the beginning of the file. If successful, ftell() returns the current file position. In case of error, it 

returns -1. 

Syntax: 

long ftell(FILE *fp); 

Here, fp – file pointer. 

rewind() 

This function is used to move the file pointer to the beginning of the file. This function is 

useful when we open file for update. 

Syntax: 

void rewind(FILE *fp); 

Here, fp – file pointer. 

It is impossible to determine if rewind() was successful or not. 

fgetpos() 

The fgetpos() is used to determine the current position of the stream. The fgetpos function 

stores the current position of stream into the object pointed to by pos. The fgetpos function returns 

zero if successful. If an error occurs, it will return a nonzero value. 

Syntax: 

int fgetpos(FILE *stream, fpos_t *pos); 

Here, 

stream - The stream whose current position is to be determined. 

pos - The current position of stream to be stored. 

fsetpos() 

The fsetpos() function moves the file position indicator to the location specified by the 'pos' 

returned by the fgetpos() function. If fsetpos() function successful, it return zero otherwise returns 

nonzero value. 

Syntax: 

int fsetpos(FILE *stream, const fpos_t *pos); 

Here, 

stream − This is the pointer to a FILE object that identifies the stream. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

pos − This is the pointer to a fpos_t object containing a position previously 

obtained with fgetpos. 

Difference Between Sequential Access Files And Random Access Files 
 

Sequential Access Files Random Access Files 

Sequential Access to a data file means that the 

computer system reads or writes information to 

the file sequentially, starting from the 

beginning of the file and proceeding step by 

step. 

Random Access to a file means that the 

computer system can read or write information 

anywhere in the data file. 

When you access information in the same 

order all the time, sequential access is faster 

than random access. 

In a random access file, you can search through 

it and find the data you need more easily. 

To read the last record of the file, we have to 

read all the records from the beginning. 

To read the last record of the file, we can read 

the last record directly. 

Example: Tape drives Example: Hard drives 

 

 

 

EXAMPLE PROGRAM: Transaction Processing Using Random Access Files 

struct clientData 

{ 

unsigned int acctNum; 

char lastName[ 15 ]; 

char firstName[ 10 ]; 

double balance; 

}; 

unsigned int enterChoice( void ); 

void textFile( FILE *readPtr ); 

void updateRecord( FILE *fPtr ); 

void newRecord( FILE *fPtr ); 

void deleteRecord( FILE *fPtr ); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

int main( void ) 

{ 

FILE *cfPtr; 

unsigned int choice; 

if ( ( cfPtr = fopen( "credit.dat", "rb+" ) ) == NULL ) 

{ 

 
 

} 

else 

{ 

puts( "File could not be opened." ); 

 

 

 

 

while ( ( choice = enterChoice() ) != 5 ) 

{ 

switch ( choice ) 

{ 

// create text file from record file 

case 1: 

textFile( cfPtr ); 

break; 

// update record 

case 2: 

updateRecord( cfPtr ); 

break; 

// create record 

case 3: 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

newRecord( cfPtr ); 

break; 

// delete existing record 

case 4: 

deleteRecord( cfPtr ); 

break; 

default: 

puts( "Incorrect choice" ); 

break; 

} 

} 

fclose( cfPtr ); 

} 

} 

void textFile( FILE *readPtr ) 

{ 

FILE *writePtr; 

int result; 

struct clientData client = { 0, "", "", 0.0 }; 

if ( ( writePtr = fopen( "accounts.txt", "w" ) ) == NULL ) 

{ 

 
 

} 

else 

{ 

puts( "File could not be opened." ); 

 

 

 

 

rewind( readPtr ); // sets pointer to beginning of file 

fprintf( writePtr, "%-6s%-16s%-11s%10s\n", "Acct", "Last Name", "First 

Name","Balance" ); 

while ( !feof( readPtr ) ) 

{ 

result = fread(&client, sizeof( struct clientData ), 1, readPtr); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

// write single record to text file 

if ( result != 0 && client.acctNum != 0 ) 

{ 

fprintf( writePtr, "%-6d%-16s%-11s%10.2f\n", 

client.acctNum,client.lastName,client.firstName, 

client.balance); 

} 

} 

fclose( writePtr ); 

} 

} 

void updateRecord( FILE *fPtr ) 

{ 

unsigned int account; 

double transaction; 

struct clientData client = { 0, "", "", 0.0 }; 

printf( "%s", "Enter account to update ( 1 - 100 ): " ); 

scanf( "%d", &account ); 

fseek( fPtr, ( account - 1 ) * sizeof( struct clientData ),SEEK_SET ); 

fread( &client, sizeof( struct clientData ), 1, fPtr ); 

if ( client.acctNum == 0 ) 

{ 

 
 

} 

else 

{ 

printf( "Account #%d has no information.\n", account ); 

 

 

 

 

printf( "%-6d%-16s%-11s%10.2f\n\n",client.acctNum, client.lastName, 

client.firstName, client.balance ); 

printf( "%s", "Enter charge ( + ) or payment ( - ): " ); 

scanf( "%lf", &transaction ); 

client.balance += transaction; 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

printf( "%-6d%-16s%-11s%10.2f\n",client.acctNum, client.lastName, 

client.firstName, client.balance ); 

fseek( fPtr, ( account - 1 ) * sizeof( struct clientData ),SEEK_SET ); 

// write updated record over old record in file 

fwrite( &client, sizeof( struct clientData ), 1, fPtr ); 

} 

} 

void deleteRecord( FILE *fPtr ) 

{ 

struct clientData client; 

struct clientData blankClient = { 0, "", "", 0 }; 

unsigned int accountNum; 

printf( "%s", "Enter account number to delete ( 1 - 100 ): " ); 

scanf( "%d", &accountNum ); 

fseek( fPtr, ( accountNum - 1 ) * sizeof( struct clientData ),SEEK_SET ); 

fread( &client, sizeof( struct clientData ), 1, fPtr ); 

if ( client.acctNum == 0 ) 

{ 

 
 

} 

else 

{ 

 

 

 

 

} 

}

printf( "Account %d does not exist.\n", accountNum ); 

 

 

 

 

fseek( fPtr, ( accountNum - 1 ) * sizeof( struct clientData ),SEEK_SET ); 

// replace existing record with blank record 

fwrite( &blankClient,sizeof( struct clientData ), 1, fPtr ); 

void newRecord( FILE *fPtr ) 

{ 

struct clientData client = { 0, "", "", 0.0 }; 

unsigned int accountNum; 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

printf( "%s", "Enter new account number ( 1 - 100 ): " ); 

scanf( "%d", &accountNum ); 

fseek( fPtr, ( accountNum - 1 ) * sizeof( struct clientData ),SEEK_SET ); 

fread( &client, sizeof( struct clientData ), 1, fPtr ); 

if ( client.acctNum != 0 ) 

{ 

 
 

} 

else 

{ 

 

 

 

 

 

 

 

 

} 

} 

printf( "Account #%d already contains information.\n",client.acctNum ); 

 

 

 

 

printf( "%s", "Enter lastname, firstname, balance\n? " ); 

scanf( "%14s%9s%lf", &client.lastName, &client.firstName, 

&client.balance ); 

client.acctNum = accountNum; 

fseek( fPtr, ( client.acctNum - 1 ) *sizeof( struct clientData ), SEEK_SET ); 

fwrite( &client,sizeof( struct clientData ), 1, fPtr ); 

unsigned int enterChoice( void ) 

{ 

unsigned int menuChoice; 

printf( "%s", "\nEnter your choice\n" 

"1 - Display a formatted text file of accounts\n" 

"2 - update an account\n" 

"3 - add a new account\n" 

"4 - delete an account\n" 

"5 - end program\n? " ); 

scanf( "%u", &menuChoice ); 

return menuChoice; 

} 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

Output: 

Enter your choice 

1 - Display a formatted text file of accounts 

2 - update an account 

3 - add a new account 

4 - delete an account 

5 - end program 

?1 
 

Acct Last Name First Name Balance 

29 Brown Nancy -24.54 

33 Dunn Stacey 314.33 

37 Barker Doug 0.00 

88 Smith Dave 258.34 

96 Stone Sam 34.98 
 

Enter your choice 

1 - Display a formatted text file of accounts 

2 - update an account 

3 - add a new account 

4 - delete an account 

5 - end program 

?2 

Enter account to update ( 1 - 100 ): 37 

37 Barker Doug 0.00 

Enter charge ( + ) or payment (-): +87.99 

37 Barker Doug 87.99 

Enter your choice 

1 - Display a formatted text file of accounts 

2 - update an account 

3 - add a new account 

4 - delete an account 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

CS8251 PROGRAMMING IN C  

5 - end program 

?3 

Enter new account number ( 1 - 100 ): 22 

Enter lastname, firstname, balance ? 

Johnston Sarah 247.45 

Enter your choice 

1 - Display a formatted text file of accounts 

2 - update an account 

3 - add a new account 

4 - delete an account 

5 - end program 

?4 

Enter account number to delete ( 1 - 100 ): 29 

Enter your choice 

1 - Display a formatted text file of accounts 

2 - update an account 

3 - add a new account 

4 - delete an account 

5 - end program 

?5 


