
ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Task Assignment and Scheduling 

Scheduling real time tasks on distributed and multiprocessor systems consists of 

two subproblems : 

1. Task allocation to the processor 

a. The task assignment problem is concerned with how to partition a set of 

tasks and then how to assign these tasks to processors -- task assignment 

can be : 1) Static or 2) Dynamic. 

b. In the static allocation scheme, the allocation of tasks to nodes is permanent 

and does not change with time. 

c. In the dynamic task assignment, tasks are assigned to the nodes as they 

arise, different instances of tasks may be allocated to different nodes. 

2. Scheduling of tasks on the individual processors : Uniprocessor scheduling 

algorithms can be used for the task set allocated to a particular processor. 

Static allocation algorithms 

The tasks are pre-allocated to processors. 

No overhead incurs during run time since tasks are permanently assigned 

to processors at the system initialization time. 

1. Utilization Balancing Algorithm 

2. Next-Fit Algorithm for RMA 

3. Bin Packing Algorithm for EDF 

Dynamic allocation algorithms 

In many applications tasks arrive sporadically at different nodes. 

The tasks are assigned to processor as and when they arise. 

The dynamic approach incurs high rim time overhead since the allocator 

component running at every node needs to keep track of the instantaneous load 

position at every other node. 

1. Focussed Addressing and Binding (FAB) 

2. The Buddy Strategy Algorithm 

 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Utilization-Balancing Algorithm 

This algorithm attempts to balance processor utilization, and proceeds by 

allocating the tasks one by one and selecting the least utilized processor. 

Objective to balance processor utilization, and proceeds by allocating the 

tasks one by one and selecting the least utilized processor. 

Maintains the tasks in a queue in increasing order of their utilizations. 

It removes tasks one by one from the head of the queue and allocates them to the 

least utilized processor each time. 

The objective of selecting the least utilized processor is to balance the 

utilization of different processors. 

 

Where ui* = Pi's utilization under an optimal algorithm that minimizes 

∑utilization 
2
 

ui
B = Pi's utilization under best-fit algorithm 

Next-Fit Algorithm for RM-Scheduling 

This is a utilization-based allocation heuristic. The task set has the same 

properties as for the RM uniprocessor scheduling algorithm. 

M is picked by user. 

Corresponding to each task class is a set of processors that is only allocated 

to tasks of that class. 

It is possible to show that this approach uses no more than N times the 

minimum possible number of processors. 

There are m classes of tasks such that, each class of tasks are assigned to a 

corresponding set of processors. 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

Ti belongs to class j < m if 

 

Ti belongs to class m otherwise. 

Bin-Packing Assignment for EDF 

Same assumptions on tasks and processors as Next-fit algorithm. 

Problem : Schedule a set of periodic independent preemptible tasks on a 

multiprocessor system consisting of identical processors. 

The task deadlines equal their periods and tasks require no other resources. 

Solution : EDF - scheduling on a processor and task set is EDF - schedulable if 

U ≤ 1 

Assign tasks such that U≤1 for all processors. 

The problem reduces to making task assignments to processors with the 

property that the sum of the utilizations of the tasks assigned to a processor does 

not exceed one. 

Focused Addressing and Bidding (FAB) Algorithm 

It uses dynamic allocations. 

FAB is a simple algorithm that can be used as an online procedure for task 

sets consisting of both critical and non-critical real-time tasks. 

Critical tasks must have sufficient time reserved for them so that they 

continue to execute successfully, even if they need their worst? Case execution 

time. 

The non-critical tasks are either processed or not, depending on the 

system's ability to do so. 

The guarantee can be based on the expected run time of the task rather than 

the worst-case run time (noncritical task). 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

THE UNDERLYING SYSTEM MODE IS : When a noncritical task 

arrives at processor pi, the processor checks to see if it has the resources and time 

to execute the task without missing any deadlines of the critical tasks or the 

previously guaranteed noncritical tasks — if yes, pi accepts this new noncritical 

task and adds it to its list of tasks to be executed and reserves time for it. 

The FAB ALGORITHM IS USED WHEN pi determines that it does not 

have the resources or time to execute the task in this case, it tries to ship that task 

out to some other processor in the system. 

Every processor maintains two tables called : Status table and system load 

table 

1. STATUS TABLE indicates which tasks have been already committed to 

rim including the set of critical tasks (which were preassigned statically) 

and any additional noncritical tasks that have been accepted, execution 

time and periods of the tasks. 

2. LOAD TABLE contains the latest load information of all other processors 

of the system, the surplus computing capacity available at the different 

processors can be determined. 

THE TIME AXIS is divided into windows, which are intervals of fixed 

duration, at the end of each window, each processor broadcasts to all other 

processors the fraction of computing power in the next window for which it has 

no committed tasks. 

1. Every processor on receiving a broadcast from a node about the load 

position updates the system load table. 

2. Since the system is distributed, this information may never be completely 

up to date. 

3. As a result, when a task arrives at a node, the node first checks whether the 

task can be processed locally, if yes, it updates its status table if not, it looks 

for a processor to offload the task. 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

THE PROCESS OF OFF LOADING A TASK is based on the content of the 

system load table, an overloaded processor checks its surplus information and : 

1. Selects a processor (called the focused processor) ps that is believed to be 

the most likely to be able to successfully execute that task by its deadline. 

2. The system load table information might be out of date — the overloaded 

processor, as insurance against this, will decide to send Requests For Bids 

(RFB) to other lightly loaded processor in parallel with sending out the task 

to the focused processor ps, this is to gain time in case ps refuses the task. 

The RFB contains the vital statistics of the task -- its expected execution time, 

any other resource requirements, its deadline, etc. 

3. The RFB asks any processor that can successfully execute the task to send 

a bid to the focused processor ps stating how quickly it can process the 

task. 

4. An RFB is only sent out if the sending processor ps estimates that there 

will be enough time for timely response to it. 

Buddy Strategy 

The buddy strategy tries to solve the same problem as the FAB algorithm, 

soft real time tasks arrive at the various processors of a multiprocessor and, if an 

individual processor finds itself overloaded, it tries to off load some tasks onto 

less lightly loaded processors. 

The buddy strategy differs from the FAB algorithm in the manner in which 

the target processors are found. 

STRATEGY 

1. Each processor has 3 thresholds of loading : Under Loaded (TU), fully 

loaded (TF), and over loaded (TV). 

2. The loading is determined by the number of jobs awaiting service in the 

processor's queue. If the queue length is Q, the processor is said to be in : 

a. State U (underloaded) if Q ≤ TU; 

b. State F (fully loaded) if TF < Q ≤ TV; 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

c. State V (overloaded) if Q > TV; 

3. If in state U a processor is in a position to execute tasks transferred from 

other processors, if in state V, it looks for other processors on which to 

offload some tasks, if in state F will neither accept nor offload tasks from/to 

other processors. 

4. When a processor makes a transition out of or into state U, it broadcasts an 

announcement to this effect. 

THE TRANSITION to/from state U is broadcasted to a limited subset of 

processors called processor's buddy set, each processor is aware of whether any 

member of its buddy set is in state U. If it is overloaded, it chooses an underloaded 

member (if any) in its buddy set on which to offload a task. 

ISSUES RELATED TO THE BUDDY SET 

1. How the buddy set is to be chosen in a multi hop network? If too large the 

state-change broadcast will heavily load the interconnection network. If too 

small the success of finding an available U state processor will diminish. 

2. If a node is in the buddy set of many overloaded processors, and it delivers 

a state-change message to them saying that now is underloaded. This can 

result in each of the overloaded processors dumping their load on this one 

processor and make it overloaded. 

3. THE CHOICE OF THE THRESHOLDS TU, TF, AND TV, in general, the 

greater the value of TV, the smaller the rate at which tasks are transferred 

from one node to another. 

Assignment with Precedence Conditions 

Algorithm that assigns and schedules tasks with precedence conditions and 

additional resource constraints, basic algorithm idea is to reduce communication 

costs by assigning(if possible) to the same processor tasks that heavily 

communicate with one another. 



ROHINI College of Engineering and Technology 

EC8791-Embedded and Realtime Systems 

UNDERLYING TASK MODEL : Each task may be composed of one or 

more subtasks. The release time of each task and the worst-case execution time 

of each subtask are given. 

The subtask communication pattern is represented by a task precedence 

graph. Ee are also given the volume of communication between tasks. 

It is assumed that if subtask si sends output to s2, this is done at the end of 

si; Associated with each subtask is a Latest Finishing Time (LFT). 

The algorithm is a trial-and-error process -- assign subtasks to the 

processors one by one in the order of their LFT values -- for same LFT the subtask 

with the greatest number of successor wins. 

Check for feasibility after each assignment, if one assignment is not 

feasible try another one, etc. 

A threshold policy kcis followed when to characterize the volume of 

communication between tasks. When subtasks communicate a lot, if possible, 

they are assigned to the same processor. 


