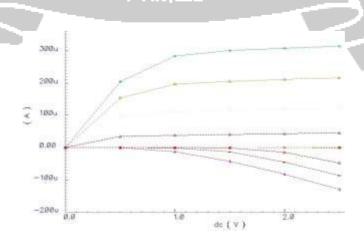
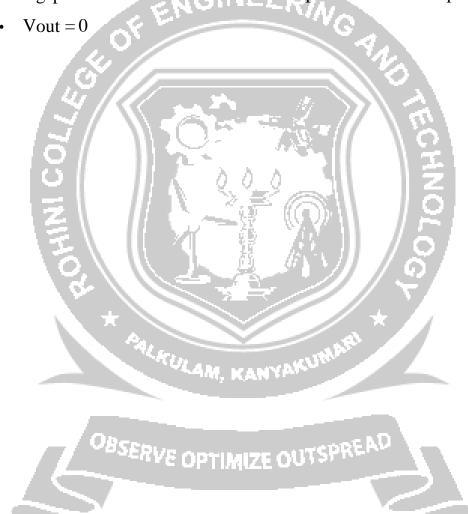

DC characteristics of MoS transistor


- A complementary CMOS inverter consists of a p-type and an n-type device connected in series.
- The DC transfer characteristics of the inverter are a function of the output voltage (Vout) with respect to the input voltage (Vin).

[Source: Neil H.E. Weste, CMOS VLSI Design ...]

- The MOS device first order Shockley equations describing the transistors in cutoff, linear and saturation modes can be used to generate the transfer characteristics of a CMOS inverter.
- Plotting these equations for both the n- and p-type devices produces the traces below.

 OBSERVE OPTIMIZE OUTSPREAD


Fig 1.4.2 MOS Transistor IV Characteristics

[Source: Neil H.E. Weste, CMOS VLSI Design ...]

- The DC transfer characteristic curve is determined by plotting the common points of Vgs intersection after taking the absolute value of the p-device IV curves, reflecting
 - them about the x-axis and superimposing them on the ndevice IV curves.
- We basically solve for Vin(ntype) = Vin(p-type) and Ids(n-type)type)=Ids(p-type)
- The desired switching point must be designed to 50 % of magnitude of the supply voltage i.e. VDD/2.
- Analysis of the superimposed n-type and p-type IV curves results in five regions in which the inverter operates. Vgs and Vds described by:
- **Region A** occurs when 0 leqVin leq Vt(n-type).
 - The n-device is in cut-off (Idsn = 0).
 - p-device is in linear region,

- GINEER/A/Idsn = 0 therefore -Idsp = 0Vdsp = Vout - VDD, but Vdsp = 0leading to an output of Vout = VDD.
 - **Region B** occurs when the condition Vtn leq Vin le VDD/2 is met.
 - Here p-device is in its nonsaturated region Vds neq 0. n-device is in saturation Saturation current Idsn is obtained by setting $V_{gs} = V_{in}$ resulting in the equation:
 - In **region B** Idsp is governed by voltages
 - Saturation currents for the two devices are:
 - **Region D** is defined by the inequality
 - p-device is in saturation while n-device is in its non-saturation region.

- Equating the drain currents allows us to solve for Vout. (See supplemental notes for algebraic manipulations).
- In **Region E** the input condition satisfies:
- The p-type device is in cut-off: Idsp=0
- The n-type device is in linear mode
- $V_{gsp} = V_{in} V_{DD}$ and this is a more positive value compared to V_{tp} .

