ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

UNIT - III

NUMERICAL DIFFERENTIATION AND INTEGRATION

PROBLEMS BASED ON DOUBLE INTEGRAL

TRAPEZOIDAL RULE AND SIMPSON'S RULE

Trapezoidal rule for **Double Integral**

$$I = \frac{hk}{4} [(Sum \ of \ four \ corners) + 2(Sum \ of \ nodes \ on \ boundary) + 4(Sum \ of \ interior \ nodes)]$$

1. Evaluate
$$\int_{1}^{2} \int_{3}^{4} \frac{1}{(x+y)^{2}} dxdy$$
 with $h = k = 0.5$

Solution:

Let
$$f(x, y) = \frac{1}{(x+y)^2}$$

(i) Range for x : 3 to 4 and h = 0.5

(ii) Range for y : 1 to 2 and k = 0.5

x			
y	3	3.5	OBSERV
1	0.0625	0.0494	0.04
1.5	0.0494	0.04	0.0331

OPTIMIZE OUTSPREAD

2	0.04	0.0331	0.0278

$$f(x,y) = \frac{1}{(x+y)^2}$$

$$f(3,1) = \frac{1}{(3+1)^2} = \frac{1}{16} = 0.0625$$

$$f(3.5,1) = \frac{1}{(3.5+1)^2} = \frac{1}{(4.5)^2} = 0.0494$$

$$f(4,1) = \frac{1}{(4+1)^2} = \frac{1}{25} = 0.04$$

$$I = \frac{hk}{4} [(Sum \ of \ four \ corners) + 2(Sum \ of \ nodes \ on \ boundary) \\ + 4(Sum \ of \ interior \ nodes)]$$

$$I = \frac{(0.5)(0.5)}{4} [(0.0625 + 0.04 + 0.04 + 0.0278) \\ + 2(0.0494 + 0.0494 + 0.0331 + 0.0331) \\ + 4(0.04)]$$

$$I = \frac{0.25}{4} [(0.1703) + 0.330 + 0.16]$$

$$I = 0.0413$$

OBSERVE OPTIMIZE OUTSPREAD

Simpson's $\frac{1}{3}$ rule for **Double Integral**

Simpson's 1/3 rule = $\frac{hk}{9}$ [(Sum of the corner of the boundary)

+2(sum of the odd nodes of the boundary)

- +4(sum of the even nodes of the boundary)
- + 4(sum of the odd nodes of the odd rows)
- +8(sum of the even nodes of the odd rows)
- +8(sum of the odd nodes of the even rows)
- + 16(sum of the even nodes of the even rows)]

$$I = \frac{(0.5)(0.5)}{9} [(0.0625 + 0.04 + 0.04 + 0.0278) + 4(0.0494 + 0.0494 + 0.0331 + 0.0331) + 16(0.04)]$$

$$I = \frac{0.25}{9} [(0.1703) + 0.660 + 0.64]$$

I = 0.0408

OBSERVE OPTIMIZE OUTSPREAD

Evaluate the integral $\int\limits_{1}^{1.4}\int\limits_{2}^{2.4}\frac{dxdy}{xy}$ using Trapezoidal rule. Verify your results

by actual integration.

Solution:
$$f(x,y) = \frac{1}{xy}$$
, x varies from (2,2.4)

y varies from
$$(1, 1.4)$$

Divide the range of x and y into 4 equal parts.

$$h = \frac{2.4 - 2}{4} = 0.1, \ k = \frac{1.4 - 1}{4} = 0.1$$

The values of f(x,y) at the nodal points are given in the table :

y	2	2.1	2.2	2.3	2.4
1	0.5	0.4762	0.4545	0.4348	0.4167
1.1	0.4545	0.4329	0.4132	0.3953	0.3788
1.2	0.4167	0.3698	0.3788	0.3623	0.3472
1.3	0.3846	0.3663	0.3497	0.3344	0.3205
1.4	0.3571	0.3401	0.3247	0.3106	0.2976

By Trapezoidal rule for double integration

$$= \frac{(0.1)(0.1)}{4} \begin{vmatrix} (0.5 + 0.4167 + 0.2976 + 0.3571) \\ +2 \begin{pmatrix} 0.4762 + 0.4545 + 0.4348 + 0.3788 + 0.3472 + 0.3205 \\ +0.3106 + 0.3247 + 0.3401 + 0.3846 + 0.4167 + 0.4545 \end{pmatrix} \\ +4 \begin{pmatrix} 0.4329 + 0.4132 + 0.3953 + 0.3623 + 0.3344 \\ +0.3497 + 0.3663 + 0.3698 + 0.3788 \end{pmatrix}$$

= 0.0614

OBSERVE OPTIMIZE OUTSPREAD

By actual integration

$$\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy = \int_{1}^{1.4} \left(\int_{2}^{2.4} \frac{1}{x} dx \right) \frac{1}{y} dy = \int_{1}^{1.4} (\log x)_{2}^{2.4} \frac{1}{y} dy$$
$$= (\log 2.4 - \log 2) (\log y)_{1}^{1.4}$$
$$= 0.0613$$

Evaluate the integral $\int\limits_1^{1.4}\int\limits_2^{2.4}\frac{dxdy}{xy}$ using Simpson's rule. Verify your results by actual integration.

Solution:
$$f(x,y) = \frac{1}{xy}$$
, x varies from (1, 1.4)
y varies from (2, 2.4)

Divide the range of x and y into 4 equal parts.

$$h = \frac{2.4 - 2}{4} = 0.1, \ k = \frac{1.4 - 1}{4} = 0.1$$

OBSERVE OPTIMIZE OUTSPREAD

By Extended Simpson's rule

$$I = \frac{hk}{9} \begin{cases} (\text{Sum of the values of } f \text{ at the four corners}) \\ + 2 (\text{Sum of the values of } f \text{ at the odd positions on the boundary except the corners}) \\ + 4 (\text{Sum of the values of } f \text{ at the even positions on the boundary except the corners}) \\ + 4 \begin{cases} \text{Sum of the values of } f \text{ at the odd positions} \\ \text{on the odd rows of the matrix except boundary rows} \end{cases} \\ + 8 \begin{cases} \text{Sum of the values of } f \text{ at the even positions} \\ \text{on the odd rows of the matrix except boundary rows} \end{cases} \\ + 8 \begin{cases} \text{Sum of the values of } f \text{ at the odd positions} \\ \text{on the even rows of the matrix except boundary rows} \end{cases} \\ + 16 \begin{cases} \text{Sum of the values of } f \text{ at the even positions} \\ \text{on the even rows of the matrix except boundary rows} \end{cases} \\ \\ = \frac{(0.1)(0.1)}{9} \begin{cases} (0.5 + 0.4167 + 0.2976 + 0.3571) \\ + 2 (0.4545 + 0.3472 + 0.3247 + 0.4167) \\ + 4 \begin{pmatrix} 0.4762 + 0.4348 + 0.3788 + 0.3205 + 0.3106 \\ + 0.3401 + 0.3846 + 0.4545 \end{pmatrix} \\ + 4 (0.3788) \\ + 8 (0.3968 + 0.3623) \\ + 8 (0.3497 + 0.4132) \\ + 16 (0.3663 + 0.3344 + 0.4329 + 0.3953) \end{cases}$$

The values of f(x,y) at the nodal points are given in the table :

y	2	2.1	2.2	2.3	2.4
1	0.5	0.4762	0.4545	0.4348	0.4167
1.1	0.4545	0.4329	0.4132	0.3953	0.3788
1.2	0.4167	0.3698	0.3788	0.3623	0.3472
1.3	0.3846	0.3663	0.3497	0.3344	0.3205
1.4	0.3571	0.3401	0.3247	0.3106	0.2976

Anna University Questions

1. Evaluate $\int_{1}^{5} \left[\int_{1}^{4} \frac{1}{x+y} dx \right] dy$ by Trapezoidal rule in x-direction with h=1 and Simpson's one-third rule in y-direction with k=1. (ND10)

Solution: [By Trap. : I = 2.4053, Simp. : I = 2.122]

2. Evaluate
$$\int_{0}^{2} \int_{0}^{1} 4xy dx dy$$
 using Simpson's rule by taking $h = \frac{1}{4}$ and $k = \frac{1}{2}$. (ND12)

3. Evaluate
$$\int_{1}^{1.42.4} \int_{2}^{1} \frac{1}{xy} dxdy$$
 using Simpson's one-third rule. (MJ13)

4. Taking
$$h = k = \frac{1}{4}$$
, evaluate
$$\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{\sin(xy)}{1 + xy} dxdy$$
 using Simpson's rule. (AM14)

Solution: [0.0141]