RCC WATER TANK - ON GROUND

3.1 Design a rectangular RC water tank resting on ground

Example 1

Design a rectangular RC water tank resting on ground with an open top for a capacity of 80000litres. The inside dimension of the tank may be taken as 6m x 4m. Design the side Walls of the tank using M20 grade concrete and Fe250 grade I mild steel. Draw the following views, cross sectional elevation of the tank showing reinforcement details in tank walls. Plan of the tank showing reinforcement details.

Step1 : Given data

Capacity of tank	= 80000litres	
size of tank	$= 6m \times 4m$	
Free board	= 150mm	
fck	=20N/mm^2	
fy	= 250N/mm^2	
: permissible stress		
σcc	= 5 N/mm^2	
oche	– 7 N/mm^2	

ocbc OBS	= 7 N/mm^2
М	$= 280 / 3 \times \sigma cbc$
	= 13.33

IS 456 :2000

Step2

Page no.80

 $\sigma st = 115 \text{ N/mm}^2 \text{ (near water face)}$ $\sigma st = 125 \text{ N/mm}^2 \text{ (away from water face)}$ Q = 1.41

$$= 0.84$$

Step3 : Dimension of tank

$$1m^{3} = 1000$$
 litres

Free board 150mm = 0.15m

j

Height of water = $80000 \times 10^{3} / (6000 \times 4000)$

= (3.35 + 0.15)

Height of water $= 3.33 \sim 3.35 \text{m}$

height of side wall H

= 3.5m

$$L / B = 6 / 4$$

= 1.5 < 2

Intensity of pressure

$$P = w (H-h)$$

= 10 (3.5 - 1

 $= 25 \text{ KN/m}^2$

Step4 : Moments in side walls

L =6m
B =4m
$$(pL^2 / 12) = (25 \times 6^2 / 12)$$

	= 75 KNm
(pL^2 / 8)	$= (25 \times 6^{2} / 8)$
	= 112.5 KNm
(pB^2 / 12)	$= (25 \times 4^{2} / 12)$
	= 34 KNm
(pB^2 / 8)	$= (25 \times 4^{2} / 8)$
	= 50 KNm
Moment at support	=34 + (75 - 50)
	= 59KNm
Moment at centre(long walls)	
	=112 - 59
	= 53KNm

Moment at centre(short walls) = 50 - 59

= -9KNm

Step5 : Design of long wall and short walls

Maximum design Moment = 59 KNm d^2 = Max moment / (Q x b) = 59 x 10^6 / (1.41 x 1000) = 204mm d Adopt effective depth d 215mm Ξ Overall depth = 215 + 25D = 240mm Direct tension in long wall $= 0.5 \times 25 \times 4$ Т = 50KN Direct tension in short wall Т $= 0.5 \times 25 \times 6$ = 75KN Ast (long wall corners) = 215 - 125Х = 90mm =[M - Tx / σ st x j x d] + (T / σ st) = [59 x 10^6) - (50 x 10^3 x 90)/ 115 x 0.84 x

215] + (50 x 10^3/ (115)

 $= 3480 \text{mm}^2$

spacing

Provide 20mm dia bars

Spacing = 1000 x [($\pi d^2 / 4$) / Ast] = 1000 x [($\pi x 20^2 / 4$) / 3480] = 90.27mm

Provide 20mm dia bars at 90mm c/c

Reinforcement in centre of span (long walls)

=[(M at centre – Tx) / (st x j x d)] ={[(53 x 10^6)– (50 x 10^6 x 90)]/ (125 x 0.84 x 215)} + [(50 x 10^6) / 125)] = 2500mm^2

Half the bars from inner face at support

Ast
$$= 3928 / 2$$

= 1964mm^2

For remaining area

= 536mm^2

Provide 16mm dia bars at 150mm c/c

Step6 : Reinforcement for cantilever moment

For 1m height from the bottom

Cantilever moment = h x w x (1/2) x (1/3)
=
$$3.5 \times 10 \times 0.5 \times 0.33$$

= 5.83 KNm
ast = (cantilever moment / st x j x d)
= [(5.83×10^{6}) / ($115 \times 0.84 \times 215$)]
= [(5.83×10^{6}) / 20769]
= 280mm^2

Provide 20mm dia bars at 160mm c/c on both sides for height of 1m from top

Minimum reinforcement

Ast = 0.3% of cross section = (0.3 / 100) x 1000 x 240 = 720mm^2

Reinforcement on each faces

Ast
$$= 720 / 2$$

Provide 8mm dia bars

Spacing = 1000 x [($\pi d^2 / 4$) / Ast] = 1000 x [($\pi x 8^2 / 4$) / 360] = 139mm

Provide 8mm dia bars at 130mm c/c on both face

Step7 : Base slab

Provide nominal thickness of 200mm for base slab

Provide half of reinforcement near each face

Ast
$$= 600 / 2$$

= 300mm^2

Spacing

Provide 10mm dia bars on both sides

Spacing = 1000 x [(
$$\pi d^2 / 4$$
) / Ast]
= 1000 x [($\pi x 10^2 / 4$) / 300]
= 261mm

Reinforcement details

Fig.3.1 Cross section

