
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

VALUES AND DATA TYPES

Values

 A value is one of the fundamental things; a program works with like a word or number.

Some example values are 5, 83.0, and 'Hello, World!'. These values belong to different types:

5 is an integer, 83.0 is a floating-point number, and 'Hello, World!' is a string. If you are not

sure what type a value has, the interpreter can tell you:

>>>type(5)

<class 'int'>

>>>type(83.0)

<class 'float'>

>>>type('Hello, World!')

<class 'str'>

In these results, the word ―class‖ is used in the sense of a category; a type is a category

of values. Integers belong to the type int, strings belong to str and floating-point numbers belong

to float. The values like '5' and '83.0' look like numbers, but they are in quotation marks like

strings.

>>>type('5')

<class 'str'>

>>>type('83.0')

<class 'str'>

Standard Datatypes

 A datatype is a category for values and each value can be of different types. There are 7

data types mainly used in python interpreter.

a) Integer

b) Float

c) Boolean

d) String

e) List

f) Tuple

g) Dictionary

a) Integer

 Let Integer be positive values, negative values and zero.

Example:

>>>2+2

 4

>>>a=-20

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

print()  20

>>> type(a)  <type ‘int’>

b) Float

 A floating point value indicates number with decimal point.

Example:

>>> a=20.14

>>>type(a)  <type ‘float’>

c) Boolean

 A Boolean variable can take only two values which are True or False. True and False

are simply set of integer values of 1 and 0.The type of this object is bool.

Example:

>>>bool(1)

True

>>>bool(0)

False

>>>a=True

>>>type(a)  <type ‘bool’>

>>>b=false #Prints error

>>>c=’True’

>>>type(c)  <type ‘str’>

The boolean type is a subclass of the int class so that arithmetic using a boolean works.

>>>True + 1

2

>>>False * 85

0

A Boolean variable should use Capital T in true & F in False and shouldn’t be enclosed within

the quotes.

>>>d=10>45  #Which returns False

Boolean Operators

 Boolean Operations are performed by ‘AND’, ‘OR’, ‘NOT’.

Example:

 True and True  True

 True and False  False

 True or True  True

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

 False or True  False

 not False  True

d) String

 A String is an ordered sequence of characters which can be created by enclosing

characters in single quotes or double quotes.

Example:

>>>a=”Hello”

>>>type(a)

 <type ‘str’>

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 in

the beginning of the string and working their way from -1 at the end. The plus (+) sign is the

string concatenation operator and the asterisk (*) is the repetition operator.

Example:

>>>str = 'Python Programming'

>>>print(str) # Prints complete string

>>>print(str[0]) # Prints first character of the string

>>>print(str[-1]) # Prints last character of the string

>>>print(str[2:5]) # Prints characters starting from 3rd to 5th

>>>print(str[2:]) # Prints string starting from 3rd character

>>>print(str * 2) # Prints string two times

>>>print(str + " Course") # Prints concatenated string

Output

Python Programming

P

g

tho

thon Programming

Python ProgrammingPython Programming

Python Programming Course

String Functions:

 For the following string functions the value of str1 and str2 are as follows:

>>>str1=”Hello”

>>>str2=”World”

S.No Method Syntax Description Example

1.
+ String1 + String2 It Concatenates two Strings

print(str1+str2)

HelloWorld

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

2.
* String*3 It multiples the string

str1*3 

HelloHelloHello

3. len() len(String) Returns the length of the String len(str1) 5

4.

centre() centre(width,fullchar)

The String will be centred

along with the width specified

and the charecters will fill the

space

str1.centre(20,+) 

++++Hello++++

5.
lower() String.lower()

Converts all upper case into

lower case
str1.lower()  hello

6.
upper() String.upper()

Converts all lower case into

upper case
str1.upper()  HELLO

7.

split() String.split(“Char”)

splits according to the

character which is present

inside the function

str1.split(“+”) 

H+E+L+L+O

8.
ord() ord(String)

It converts a string in to its

corresponding value
ord(‘a’) 96

9.
chr() chr(Number)

It converts a number in to its

corresponding String
chr(100)-->’d’

10.
rstrip() rstrip()

It removes all the spaces at the

end
rstrip(a)  it returns -1

11. \n print(“String\n”) New Line Character print(“Hello\n”)

12. \t print(“String\t”) It provides Space print(“Hello\t”)

13.
\’ print(“String\’String”) Escape Character (/) is used

to print single quote or double

quote in a String

print(“Hello I\’m

Fine”)

14.
\” print(“String\”String”)

print(“Hello I\”m

Fine”)

e) List

A list is an ordered set of values, where each value is identified by an index. The values

that make up a list are called its elements. A list contains items separated by commas and

enclosed within square brackets ([]). Lists are mutable which means the items in the list can be

add or removed later.

The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1. The plus (+)

sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

Example:

>>>list = ['Hai', 123 , 1.75, 'vinu', 100.25]

>>>smalllist = [251, 'vinu']

>>>print(list) # Prints complete list

>>>print(list[0]) # Prints first element of the list

>>>print(list[-1]) # Prints last element of the list

>>>print(list[1:3]) # Prints elements starting from 2nd till 3rd

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

>>>print list([2:]) # Prints elements starting from 3rd element

>>>print(smalllist * 2) # Prints list two times

>>>print(list + smalllist) # Prints concatenated lists

Output

['Hai', 123, 1.75, 'vinu', 100.25]

Hai

100.25

[123, 1.75]

[1.75, 'vinu', 100.25]

[251, 'vinu', 251, 'vinu']

['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

f) Tuple

Tuple are sequence of values much like the list. The values stored in the tuple can be of

any type and they are indexed by integers. A tuple consists of a sequence of elements separated

by commas. The main difference between list and tuples are:” List is enclosed in square bracket

([]) and their elements and size can be changed while tuples are enclosed in parenthesis (()) and

cannot be updated.

Syntax:

Example:

>>> tuple1=(‘1’,’2’,’3’,’5’)

>>>tuple2=(‘a’,’b’,’c’)

>>>tuple3=’3’,’apple’,’100’

>>>print(tuple2) #print tuple2 elements

>>>print(tuple2[0]) #print the first element of tuple2

>>>print(tuple2 + tuple3) #print the concatenation of tuple2 and tuple3

>>>print(tuple3[2]) #print the second element of tuple3

Output:

(‘a’,’b’,’c’)

(‘a’)

(‘1’,’2’,’3’,’5’,‘a’,’b’,’c’)

(’3’)

g) Dictionary

tuple_name=(items)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

Dictionaries are an unordered collection of items. Dictionaries are enclosed by curly

braces ‘{ }’ .The element in dictionary is a comma separated list of keys: value pairs where keys

are usually numbers and strings and values can be any arbitrary python data types. The value of a

dictionary can be accessed by a key. and values can be accessed using square braces ‘[]’

Syntax:

Example:

>>>dict1={}

>>>dict2={1:10,2:20,3:30}

>>>dict3={‘A’:’apple’,’B’:’200’}

>>>Dict={‘Name’:’john’,’SSN’:4576,’Designation’:’Manager’}

dict_name= {key: value}

