## ANALYTIC FUNCTIONS – NECESSARY AND SUFFICIENT CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR CO-ORDINATES

## Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

## **Entire Function:** [Integral function]

A function which is analytic everywhere in the finite plane is called an entire

function.

An entire function is analytic everywhere except at  $z = \infty$ .

**Example:**  $e^z$ , sin z, cos z, sinhz, cosh z

Example: Show that  $f(z) = \log z$  analytic everywhere except at the origin and find its

derivatives.

Solution:

Let 
$$z = re^{i\theta}$$
  
 $f(z) = \log z$   
 $= \log(re^{i\theta}) = \log r + \log(e^{i\theta}) = \log r + \log(e^{i\theta})$ 

But, at the origin, r = 0. Thus, at the origin,

$$f(z) = log0 + i\theta = -\infty + i\theta$$

So, f(z) is not defined at the origin and hence is not differentiable there.

At points other than the origin, we have



So, *logz* satisfies the C–R equations.

Further  $\frac{1}{r}$  is not continuous at z = 0.

So,  $u_r$ ,  $u_\theta$ ,  $v_r$ ,  $v_\theta$  are continuous everywhere except at z = 0. Thus log z satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

Note : 
$$e^{-\infty} = 0$$
  
 $\log e^{-\infty} = \log 0$ ;  $-\infty = \log 0$ 

iθ

$$f'(z) = \frac{u_r + iv_r}{e^{i\theta}} = \frac{\left(\frac{1}{r}\right) + i(0)}{e^{i\theta}} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Note:  $f(z) = u + iv \Rightarrow f(re^{i\theta}) = u + iv$ 

Differentiate w.r.to 'r', we get

$$(i.e.) e^{i\theta} f'(re^{i\theta}) = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$

Example: Check whether  $w = \overline{z}$  is analytics everywhere.

Solution:



Hence, C-R equations are not satisfied.

: The function f(z) is nowhere analytic.

Example: Test the analyticity of the function w = sin z. Solution:

Let w = f(z) = sinz

 $u + iv = \sin(x + iy)$ , KANYA<sup>KUN</sup>

 $u + iv = \sin x \cos iy + \cos x \sin iy$ 

$$u + iv = \sin x \cosh y + i \cos x \sin hy$$

Equating real and imaginary parts, we get OUTSPREND

| $u = \sin x \cosh y$   | $v = \cos x \sinh y$    |
|------------------------|-------------------------|
| $u_x = \cos x \cosh y$ | $v_x = -\sin x \sinh y$ |
| $u_y = \sin x \sinh y$ | $v_y = \cos x \cosh y$  |

 $\therefore u_x = v_y$  and  $u_y = -v_x$ 

C – R equations are satisfied.

Also the four partial derivatives are continuous.

Hence, the function is analytic.

Example: Determine whether the function  $2xy + i(x^2 - y^2)$  is analytic or not. Solution:

Let 
$$f(z) = 2xy + i(x^2 - y^2)$$
  
(*i.e.*)  
 $u = 2xy$   $v = x^2 - y^2$   
 $\frac{\partial u}{\partial x} = 2y$   $\frac{\partial v}{\partial x} = 2x$   
 $\frac{\partial u}{\partial y} = 2x$   $\frac{\partial v}{\partial y} = -2y$ 

C-R equations are not satisfied.

Hence, f(z) is not an analytic function.

Example: Prove that  $f(z) = \cosh z$  is an analytic function and find its derivative. Solution:

Given 
$$f(z) = \cosh z = \cos(iz) = \cos[i(x + iy)]$$
  
=  $\cos(ix - y) = \cos ix \cos y + \sin(ix) \sin y$   
 $u + iv = \cosh x \cos y + i \sinh x \sin y$ 

| $u = \cosh x \cos y$                              | $v = \sinh x \sin y$                             |      |
|---------------------------------------------------|--------------------------------------------------|------|
| $u_x = \sinh x \cos y$<br>$u_y = -\cosh x \sin y$ | $v_x = \cosh x \sin y$<br>$v_y = \sinh x \cos y$ | NA N |

 $u_x, u_y, v_x$  and  $v_y$  exist and are

٩, ۴

continuous.

$$u_x = v_y$$
 and  $u_y = -v_x$  OPTIMIZE OUTSPRE

C-R equations are satisfied.

/ Ob

 $\therefore$  f(z) is analytic everywhere.

Now,  $f'(z) = u_x + iv_x$ 

 $= \sinh x \cos y + i \cosh x \sin y$ 

 $= \sinh(x + iy) = \sinh z$ 

Example: If w = f(z) is analytic, prove that  $\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$  where z = x + iy, and

prove that  $\frac{\partial^2 w}{\partial z \partial \overline{z}} = 0.$ 

## Solution:

Let w = u(x, y) + iv(x, y)

As f(z) is analytic, we have  $u_x = v_y$ ,  $u_y = -v_x$ 

Now, 
$$\frac{dw}{dz} = f'(z) = u_x + iv_x = v_y - iu_y = i(u_y + iv_y)$$
  

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = -i\left[\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right]$$

$$= \frac{\partial}{\partial x}(u + iv) = -i\frac{\partial}{\partial y}(u + iv)$$

$$= \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$$
We know that,  $\frac{\partial w}{\partial z} = 0$ 

$$\therefore \frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$$
Also
$$\frac{\partial^2 w}{\partial \overline{z} \partial z} = 0$$

Example: Prove that every analytic function w = u(x, y) + iv(x, y)can be expressed as a function of z alone.

**Proof:** 

Let 
$$z = x + iy$$
 and  $\overline{z} = x - iy$   
 $x = \frac{z + \overline{z}}{2}$  and  $y = \frac{z + \overline{z}}{2i}$ 

Hence, u and v and also w may be considered as a function of z and  $\overline{z}$ 

Consider 
$$\frac{\partial w}{\partial \overline{z}} = \frac{\partial u}{\partial \overline{z}} + i \frac{\partial v}{\partial \overline{z}}$$
  

$$= \left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \overline{z}} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \overline{z}}\right) + \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \overline{z}}\right)$$

$$= \left(\frac{1}{2}u_x - \frac{1}{2i}u_y\right) + i\left(\frac{1}{2}v_x - \frac{1}{2i}v_y\right)$$

$$= \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$
The product of the second se

This means that w is independent of  $\overline{z}$ 

(i.e.) w is a function of z alone.

This means that if w = u(x, y) + iv(x, y) is analytic, it can be rewritten as a function of (x + iy).

Equivalently a function of  $\overline{z}$  cannot be an analytic function of z.

Example: Find the constants a, b, c if f(z) = (x + ay) + i(bx + cy) is analytic. Solution:

$$f(z) = u(x, y) + iv(x, y)$$

| = (x + ay) + i(bx + cy) |             |  |
|-------------------------|-------------|--|
| u = x + ay              | v = bx + cy |  |
| $u_x = 1$               | $v_x = b$   |  |
| $u_y = a$               | $v_y = c$   |  |

Given f(z) is analytic

$$\Rightarrow u_x = v_y \quad \text{and} \quad u_y = -v_x \text{NEER}$$
$$1 = c \quad \text{and} \quad a = -b$$

Example: Examine whether the following function is analytic or not  $f(z) = e^{-x}(\cos y - i \sin y)$ .

Solution:

Given 
$$f(z) = e^{-x}(\cos y - i \sin y)$$
  
 $\Rightarrow u + iv = e^{-x} \cos y - ie^{-x} \sin y$   
 $u = e^{-x} \cos y$   $v = -e^{-x} \sin y$   
 $u_x = -e^{-x} \cos y$   $v_x = e^{-x} \sin y$   
 $u_y = -e^{-x} \sin y$   $v_y = -e^{-x} \cos y$   
Here,  $u_x = v_y$  and  $u_y = -v_x$   
 $\Rightarrow$  C-R equations are satisfied  
 $\Rightarrow f(z)$  is analytic.

Example: Test whether the function  $f(z) = \frac{1}{2}\log(x^2 + y^2 + \tan^{-1}(\frac{y}{x}))$  is analytic or not. Solution:

Given 
$$f(z) = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$$
 OUTSPREAU  
(*i.e.*) $u + iv = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$   
 $u = \frac{1}{2}\log(x^2 + y^2)$   $v = \tan^{-1}\left(\frac{y}{x}\right)$ 

$$u_{x} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2x)$$

$$v_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ -\frac{y}{x^{2}} \right]$$

$$= \frac{x}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2y)$$

$$u_{y} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2y)$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{y}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

$$u_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}} \left[ \frac{1}{x} \right]$$

Example: Find where each of the following functions ceases to be analytic.

(i) 
$$\frac{z}{(z^2-1)}$$
 (ii)  $\frac{z+i}{(z-i)^2}$   
Solution:  
(i) Let  $f(z) = \frac{z}{(z^2-1)}$   
 $f'(z) = \frac{(z^2-1)(1)-z(2z)}{(z^2-1)^2} = \frac{-(z^2+1)}{(z^2-1)^2}$   
 $f(z)$  is not analytic, where  $f'(z)$  does not exist.  
(*i.e.*)  $f'(z) \rightarrow \infty$   
(*i.e.*)  $(z^2-1)^2 = 0$   
(*i.e.*)  $(z^2-1)^2 = 0$   
(*i.e.*)  $z^2-1=0$   
OBSERV  $z = 1$   
 $z = \pm 1$  IMIZE OUTSPREAD

 $\therefore f(z)$  is not analytic at the points  $z = \pm 1$ 

(ii) Let 
$$f(z) = \frac{z+i}{(z-i)^2}$$
  
 $f'(z) = \frac{(z-i)^2(1)(z+i)[2(z-i)]}{(z-i)^4} = \frac{(z+3i)}{(z-i)^3}$   
 $f'(z) \to \infty, at \ z = i$ 

 $\therefore f(z)$  is not analytic at z = i.