ANALYTIC FUNCTIONS - NECESSARY AND SUFFICIENT CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR COORDINATES

Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

Entire Function: [Integral function]

A function which is analytic everywhere in the finite plane is called an entire function.

An entire function is analytic everywhere except at $z=\infty$.
Example: $e^{z}, \sin z, \cos z, \sinh z, \cosh z$
Example: Show that $f(z)=\log z$ analytic everywhere except at the origin and find its derivatives.

Solution:

$$
\begin{aligned}
& \text { Let } z=r e^{i \theta} \\
& \qquad \begin{aligned}
f(z) & =\log z \\
& =\log \left(r e^{i \theta}\right)=\log r+\log \left(e^{i \theta}\right)=\log r+i \theta
\end{aligned}
\end{aligned}
$$

But, at the origin, $r=0$. Thus, at the origin,

$$
\text { Note : } e^{-\infty}=0
$$

$$
f(z)=\log 0+i \theta=-\infty+i \theta
$$

So, $f(z)$ is not defined at the origin and hence is not

$$
\log e^{-\infty}=\log 0 ;-\infty=\log 0
$$ differentiable there.

At points other than the origin, we have

So, $\log z$ satisfies the $\mathrm{C}-\mathrm{R}$ equations.
Further $\frac{1}{r}$ is not continuous at $z=0$.
So, $u_{r}, u_{\theta}, v_{r}, v_{\theta}$ are continuous everywhere except at $z=0$. Thus $\log \mathrm{z}$ satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$
f^{\prime}(z)=\frac{u_{r}+i v_{r}}{e^{i \theta}}=\frac{\left(\frac{1}{r}\right)+i(0)}{e^{i \theta}}=\frac{1}{r e^{i \theta}}=\frac{1}{z}
$$

Note: $f(z)=u+i v \Rightarrow f\left(r e^{i \theta}\right)=u+i v$
Differentiate w.r.to 'r', we get

$$
\text { (i.e.) } e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)=\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}
$$

Example: Check whether $\boldsymbol{w}=\overline{\mathbf{z}}$ is analytics everywhere.

Solution:

Let $w=f(z)=\bar{z}$

$$
\mathrm{u}+i v=x-i y
$$

$u=x$	$v=-y$
$u_{x}=1$	$v_{x}=0$
$u_{y}=0$	$v_{y}=-1$

$u_{x} \neq v_{y}$ at any point $\mathrm{p}(\mathrm{x}, \mathrm{y})$
Hence, $\mathrm{C}-\mathrm{R}$ equations are not satisfied.
\therefore The function $f(z)$ is nowhere analytic.

Example: Test the analyticity of the function $w=\sin z$.

Solution:

$$
\text { Let } \begin{aligned}
w= & f(z)=\sin z \\
& u+i v=\sin (x+i y) \\
& u+i v=\sin x \cos \mathrm{y}+\cos \mathrm{x} \sin \mathrm{iy} \\
& u+i v=\sin \mathrm{x} \cosh \mathrm{y}+\mathrm{i} \cos \mathrm{x} \sin \mathrm{y} y
\end{aligned}
$$

Equating real and imaginary parts, we get

$u=\sin x \cosh y$	$v=\cos x \sinh y$
$u_{x}=\cos x \cosh y$	$v_{x}=-\sin x \sinh y$
$u_{y}=\sin x \sinh y$	$v_{y}=\cos x \cosh y$

$$
\therefore u_{x}=v_{y} \text { and } u_{y}=-v_{x}
$$

$\mathrm{C}-\mathrm{R}$ equations are satisfied.
Also the four partial derivatives are continuous.
Hence, the function is analytic.

Example: Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic or not.

Solution:

Let $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$

(i.e.) | $u=2 x y$ | $v=x^{2}-y^{2}$ |
| :---: | :---: |
| $\frac{\partial u}{\partial x}=2 y$ | $\frac{\partial v}{\partial x}=2 x$ |
| $\frac{\partial u}{\partial y}=2 x$ | $\frac{\partial v}{\partial y}=-2 y$ |

$$
u_{x} \neq v_{y} \text { and } u_{y} \neq-v_{x}
$$

$$
\mathrm{C}-\mathrm{R} \text { equations are not satisfied. }
$$

Hence, $f(z)$ is not an analytic function.
Example: Prove that $f(z)=\cosh z$ is an analytic function and find its derivative.

Solution:

Given $f(z)=\cosh z=\cos (i z)=\cos [i(x+i y]$

$$
=\cos (i x-y)=\cos i x \cos y+\sin (i x) \sin y
$$

$$
u+i v=\cosh x \cos y+i \sinh x \sin y
$$

$u=\cosh x \cos y$	$v=\sinh x \sin y$
$u_{x}=\sinh \mathrm{x} \cos \mathrm{y}$	$v_{x}=\cosh \mathrm{x} \sin \mathrm{y}$
$u_{y}=-\cosh x \sin y$	$v_{y}=\sinh \mathrm{x} \cos \mathrm{y}$

$\therefore u_{x}, u_{y}, v_{x}$ and v_{y} exist and are
continuous.

$$
u_{x}=v_{y} \text { and } u_{y}=-v_{x}
$$

$\mathrm{C}-\mathrm{R}$ equations are satisfied.
$\therefore f(z)$ is analytic everywhere.

$$
\text { Now, } \begin{aligned}
f^{\prime}(z) & =u_{x}+i v_{x} \\
& =\sinh x \cos y+i \cosh x \sin y \\
& =\sinh (x+i y)=\sinh z
\end{aligned}
$$

Example: If $w=f(z)$ is analytic, prove that $\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$ where $z=x+i y$, and prove that $\frac{\partial^{2} w}{\partial z \partial \bar{z}}=0$.

Solution:

Let $w=u(x, y)+i v(x, y)$
As $f(z)$ is analytic, we have $u_{x}=v_{y}, u_{y}=-v_{x}$

$$
\text { Now, } \begin{aligned}
\frac{d w}{d z}= & f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y}=i\left(u_{y}+i v_{y}\right) \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i\left[\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right] \\
& =\frac{\partial}{\partial x}(u+i v)=-i \frac{\partial}{\partial y}(u+i v) \\
& =\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}
\end{aligned}
$$

We know that, $\frac{\partial w}{\partial z}=0$

$$
\therefore \frac{\partial^{2} w}{\partial z \partial \bar{z}}=0
$$

Also $\quad \frac{\partial^{2} w}{\partial \bar{z} \partial z}=0$
Example: Prove that every analytic function $w=u(x, y)+i v(x, y)$ can be expressed as a function of z alone.

Proof:

Let $z=x+i y$ and $\bar{z}=x-i y$

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z+\bar{z}}{2 i}
$$

Hence, u and v and also w may be considered as a function of z and \bar{z}
Consider $\frac{\partial w}{\partial \bar{z}}=\frac{\partial u}{\partial \bar{z}}+i \frac{\partial v}{\partial \bar{z}}$

$$
\begin{aligned}
& =\left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \bar{z}}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \bar{z}}\right)+\left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \bar{z}}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \bar{z}}\right) \\
& =\left(\frac{1}{2} u_{x}-\frac{1}{2 i} u_{y}\right)+i\left(\frac{1}{2} v_{x}-\frac{1}{2 i} v_{y}\right) \\
& =\frac{1}{2}\left(u_{x}-v_{y}\right)+\frac{i}{2}\left(u_{y}+v_{x}\right) \\
& =0 \text { by } \mathrm{C}-\mathrm{R} \text { equations as } w \text { is analytic. }
\end{aligned}
$$

This means that w is independent of \bar{z}

$$
\text { (i.e.) } w \text { is a function of } z \text { alone. }
$$

This means that if $w=u(x, y)+i v(x, y)$ is analytic, it can be rewritten as a function of $(x+$ iy).

Equivalently a function of \bar{z} cannot be an analytic function of z.
Example: Find the constants a, b, cif $f(z)=(x+a y)+i(b x+c y)$ is analytic.
Solution:

$$
f(z)=u(x, y)+i v(x, y)
$$

$$
=(x+a y)+i(b x+c y)
$$

$u=x+a y$	$v=b x+c y$
$u_{x}=1$	$v_{x}=b$
$u_{y}=a$	$v_{y}=c$

Given $f(z)$ is analytic

$$
\begin{aligned}
\Rightarrow u_{x} & =v_{y} \quad \text { and } \quad u_{y} \\
1 & =c \quad \text { and } \quad a=-b
\end{aligned}
$$

Example: Examine whether the following function is analytic or not $f(z)=e^{-x}(\cos y-i$ $\sin y)$.

Solution:

Given $f(z)=e^{-x}(\cos y-i \sin y)$

$\Rightarrow u+i v=e^{-x} \cos y-i e^{-x} \sin y$	
$u=e^{-x} \cos y$	$v=-e^{-x} \sin y$
$u_{x}=-e^{-x} \cos y$	$v_{x}=e^{-x} \sin y$
$u_{y}=-e^{-x} \sin y$	$v_{y}=-e^{-x} \cos y$

Here, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
$\Rightarrow \mathrm{C}-\mathrm{R}$ equations are satisfied
$\Rightarrow f(z)$ is analytic.
Example: Test whether the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}+\tan ^{-1}\left(\frac{y}{x}\right)\right.$ is analytic or not.

Solution:

Given $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}+i \tan ^{-1}\left(\frac{y}{x}\right)\right.$

$$
\begin{aligned}
& \text { (i.e. }) u+i v=\frac{1}{2} \log \left(x^{2}+y^{2}+i \tan ^{-1}\left(\frac{y}{x}\right)\right. \\
& u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)
\end{aligned} \quad v=\tan ^{-1}\left(\frac{y}{x}\right)
$$

$\begin{aligned} u_{x} & =\frac{1}{2} \frac{1}{x^{2}+y^{2}}(2 x) \\ & =\frac{x}{x^{2}+y^{2}} \\ u_{y} & =\frac{1}{2} \frac{1}{x^{2}+y^{2}}(2 y) \\ & =\frac{y}{x^{2}+y^{2}} \end{aligned}$	$\begin{aligned} v_{x}= & \frac{1}{1+\frac{y^{2}}{x^{2}}}\left[-\frac{y}{x^{2}}\right] \\ & =\frac{-y}{x^{2}+y^{2}} \\ v_{y} & =\frac{1}{1+\frac{y^{2}}{x^{2}}}\left[\frac{1}{x}\right] \\ & =\frac{x}{x^{2}+y^{2}} \end{aligned}$

Here, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$

$$
\begin{aligned}
& \Rightarrow \mathrm{C}-\mathrm{R} \text { equations are satisfied } \\
& \Rightarrow f(z) \text { is analytic. }
\end{aligned}
$$

Example: Find where each of the following functions ceases to be analytic.

(i) $\frac{z}{\left(z^{2}-1\right)}$
(ii) $\frac{z+i}{(z-i)^{2}}$

Solution:

(i) Let $f(z)=\frac{z}{\left(z^{2}-1\right)}$

$$
f^{\prime}(z)=\frac{\left(z^{2}-1\right)(1)-z(2 z)}{\left(z^{2}-1\right)^{2}}=\frac{-\left(z^{2}+1\right)}{\left(z^{2}-1\right)^{2}}
$$

$f(z)$ is not analytic, where $f^{\prime}(z)$ does not exist.

$$
\begin{aligned}
& \text { (i.e.) } f^{\prime}(z) \rightarrow \infty \\
& \text { (i.e.) }\left(z^{2}-1\right)^{2}=0 \\
& \text { (i.e.) }-z^{2}-1=0 \\
& \text { (0) } 2 \times 7=1 \\
& z= \pm 1
\end{aligned}
$$

$\therefore f(z)$ is not analytic at the points $\bar{z}= \pm 1$
(ii) Let $f(z)=\frac{z+i}{(z-i)^{2}}$

$$
\begin{aligned}
& f^{\prime}(z)=\frac{(z-i)^{2}(1)(z+i)[2(z-i)]}{(z-i)^{4}}=\frac{(z+3 i)}{(z-i)^{3}} \\
& f^{\prime}(z) \rightarrow \infty, \text { at } z=i
\end{aligned}
$$

$\therefore f(z)$ is not analytic at $z=i$.

