CHARACTERISTIC EQUATION

If A is any square matrix of order n, the matrix $A-\lambda I$ where I is the unit matrix and λ be scaler of order n can be formed as

$$
|\mathrm{A}-\lambda \mathrm{I}|=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
& \vdots & & \ddots \\
\vdots \\
a_{n 1} & & a_{n 2} & \cdots \\
a_{n n}-\lambda
\end{array}\right|=0 \quad \text { is called the characteristic equation of } \mathrm{A} \text {. }
$$

Working Rule for Characteristic Equation

Type I: For 2×2 matrix
If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, then the characteristic equation of A is $\lambda^{2}-s_{1} \lambda+s_{2}=0$
Where $s_{1}=$ Sum of the leading diagonal elements $=a_{11}+a_{22}$

$$
s_{2}=|A|=\text { Determinant of a matrix A. }
$$

Type II: For 3×3 matrix
If $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$, then the characteristic equation of A is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$
Where $s_{1}=$ Sum of the leading diagonal elements $=a_{11}+a_{22}+a_{33}$
$s_{2}=$ Sum of minors of leading diagonal elements

$$
=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

$s_{3}=|A|=$ Determinant of a matrix A.
Example: Find the characteristic equation of the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{2}-s_{1} \lambda+s_{2}=0$

$$
\begin{aligned}
\mathrm{s}_{1} & =\text { sum of the main diagonal element } \\
& =1+2=3 \\
\mathrm{~s}_{2} & =|\mathrm{A}|=\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right|=2
\end{aligned}
$$

Characteristic equation is $\lambda^{2}-3 \lambda+2=0$
Example: Find the characteristic equation of the matrix $\left(\begin{array}{cc}1 & -2 \\ -5 & 4\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{2}-s_{1} \lambda+s_{2}=0$

$$
\begin{aligned}
\mathrm{s}_{1} & =\text { sum of the main diagonal element } \\
& =1+4=5 \\
\mathrm{~s}_{2} & =|\mathrm{A}|=\left|\begin{array}{cc}
1 & -2 \\
-5 & 4
\end{array}\right|=4-10=-6
\end{aligned}
$$

Characteristic equation is $\lambda^{2}-5 \lambda-6=0$
Example: Find the characteristic equation of the matrix $\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$

$$
\begin{aligned}
& s_{1}=\text { sum of the main diagonal element } \\
& =2+2+2=6 \\
& \mathrm{~s}_{2}=\text { sum of the minors of the main diagonalelement } \\
& =\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right|+\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right|=11 \\
& \mathrm{~s}_{3}=|\mathrm{A}|=\left|\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right|=2(4-0)-0+1(0-2) \\
& =8-2=6
\end{aligned}
$$

Characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$
Example: Find the characteristic equation of the matrix $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0$

$$
\begin{aligned}
\mathrm{s}_{1} & =\text { sum of the main diagonal element } \\
& =2+2+1=5 \\
\mathrm{~s}_{2} & =\text { sum of the minors of the main diagonalelement } \\
& =\left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right|+\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=7 \\
\mathrm{~s}_{3} & =|\mathrm{A}|=\left|\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right|=2(2-0)-1(1-0)+1(0-0) \\
& =4-1=3
\end{aligned}
$$

Characteristic equation is $\lambda^{3}-5 \lambda^{2}+7 \lambda-3=0$

Example: Find the characteristic polynomial of the matrix $\left(\begin{array}{ccc}0 & -2 & -2 \\ -1 & 1 & 2 \\ -1 & -1 & 2\end{array}\right)$

Solution:

The characteristic polynomial is $\lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}$

$$
\begin{aligned}
\mathrm{s}_{1} & =\text { sum of the main diagonal element } \\
& =0+1+2=3 \\
\mathrm{~s}_{2} & =\text { sum of the minors of the main diagonalelement }
\end{aligned}
$$

$$
=\left|\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right|+\left|\begin{array}{cc}
0 & -2 \\
-1 & 2
\end{array}\right|+\left|\begin{array}{cc}
0 & -2 \\
-1 & 1
\end{array}\right|=0
$$

$$
s_{3}=|A|=\left|\begin{array}{ccc}
0 & -2 & -2 \\
-1 & 1 & 2 \\
-1 & -1 & 2
\end{array}\right|=0+2(-2+2)-2(1+1)
$$

$$
=-4
$$

