LINEAR COMBINATIONS

Definition :

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . ., \mathrm{v}_{\mathrm{m}}$ be vectors of vector space V . The vector v in V is a linear combination of $\mathrm{v}_{1}, \ldots ., \mathrm{v}_{\mathrm{m}}$ if there exist scalars $\mathrm{a}_{1}, \ldots ., \mathrm{a}_{\mathrm{m}}$ such that v can be written as $\mathrm{v}=\mathrm{a}_{1} \mathrm{~V}_{1}+\mathrm{a}_{2} \mathrm{~V}_{2}+\ldots .+\mathrm{a}_{\mathrm{m}} \mathrm{v}_{\mathrm{m}}$

Span

Definition :

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . ., \mathrm{v}_{\mathrm{m}}$ be vector of vector space V . These vector span V if every vector in V can be expressed as a linear combination of them.

THE SYSTEM OF HOMOGENOUS EQUATIONS

The system of homogenous equations is $A X=0$
where $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ a_{n 1} & a_{n 2} & \ldots & a_{m n}\end{array}\right], X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right], 0=\left[\begin{array}{c}0 \\ 0 \\ \cdot \\ 0 \\ 0\end{array}\right]$
Evidently $X=0$ is a solution of $A X=0$ in which $X=0$, called trivial solution.

There are solutions to $A X=0$ in which $X \neq 0$, called non-trivial solution.

Note: For $A X=0$, there is more than one solution.

We have the following two theorems without proof.

Theorem 1 : The system of homogenous equations $A X=0$ has trivial |ution $(X=0)$ if and only if $|A| \neq 0$

Theorem 2 :The system of homogenous equations $A X=0$ has non-trivial ution $(X \neq 0)$ if and only if $|A|=0$.

Find the non-trivial solutions of the equations

$$
x_{1}+2 x_{2}-x_{3}=0,3 x_{1}+x_{2}-x_{3}=0,2 x_{1}-x_{2}=0
$$

Sol:

The system is equivalent to

$$
\begin{aligned}
A X & =\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 1 & -1 \\
2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\therefore|A| & =\left|\begin{array}{ccc}
1 & 2 & -1 \\
3 & 1 & -1 \\
2 & -1 & 0
\end{array}\right| \\
& =1(0-1)-2(0+2)-1(-3-2) \\
& =-5+5=0
\end{aligned}
$$

$\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right| \neq 0$
Hence rank of A is $r=2$.
$n=$ number of unknown $=3$

Therefore, $n-r=3-2=1$.

There is only one linearly independent non-zero solution.
Solving actually, by rule of cross multiplication, the equation
$x_{1}+2 x_{2}-x_{3}=0$
$3 x_{1}+x_{2}-x_{3}=0$ we get,
$\frac{x_{1}}{-2+1}=\frac{x_{2}}{-3+1}=\frac{x_{3}}{1-6}$
$\frac{x_{1}}{-1}=\frac{x_{2}}{-2}=\frac{x_{3}}{-5} \frac{x_{1}}{1}=\frac{x_{2}}{2}=\frac{x_{3}}{5}$.

$$
x_{1}=1, x_{2}=2, x_{3}=5
$$

Solve the system of homogeneous equations
$x_{1}+x_{2}+2 x_{3}=0,2 x_{1}-3 x_{2}-x_{3}=0,-3 x_{1}+2 x_{2}+5 x_{3}=0$
The system is equivalent to

$$
\begin{aligned}
A X & =\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -3 & -1 \\
-3 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
|A| & =\left|\begin{array}{ccc}
1 & 1 & 2 \\
2 & -3 & -1 \\
-3 & 2 & 5
\end{array}\right| \\
& =1(-15+2)-1(10-3)+2(4-9) \\
& =-30 \neq 0
\end{aligned}
$$

Therefore the system has a trivial solution

$$
x_{1}=0, x_{2}=0, x_{3}=0
$$

THE SYSTEM OF NON-HOMOGENOUS EQUATIONS

The system of non-homogenous equations is $A X=B$

$$
\text { where } A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
0 & \cdot & . & 0 \\
. & . & . & . \\
a_{n 1} & a_{n 2} & \ldots & a_{m n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
. \\
\vdots \\
x_{n}
\end{array}\right], B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
\vdots \\
b_{n}
\end{array}\right]
$$

The system $A X=B$ is said to be consistent if it has a solution. Otherwise it is inconsistence.

Roaches' theorem :

The system $A X=B$ is consistent if and only if $r(A, B)=r(A)$

Note

- If $r(A, B)=r(A)=$ number of unknowns, then the system has unique solution.
- If $r(A, B)=r(A)<$ number of unknowns, then the system has an infinite number of solutions.
- If $\tau(A, B) \neq r(A)$, then the system has no solution.

Show that the equations $+y+z=6, x-y+2 z=53 x+y+z=8$, and, $2 x-2 y+3 z=7$ are consistent and solve them.

Sol:

The system of the given equations is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 2 \\
3 & 1 & 1 \\
2 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
5 \\
8 \\
7
\end{array}\right]
$$

$\left[\begin{array}{ll}A & ,\end{array}\right]=\left(\begin{array}{cccc}1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7\end{array}\right)$

$$
\sim\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -2 & 1 & -1 \\
0 & -2 & -2 & -10 \\
0 & -4 & 1 & -5
\end{array}\right) \begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& R_{4} \rightarrow R_{4}-2 R_{1}
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -2 & 1 & -1 \\
0 & 0 & 3 & 9 \\
0 & 0 & 1 & 3
\end{array}\right) \begin{gathered}
\\
R_{3} \rightarrow R_{3}-R_{2} \\
R_{4} \rightarrow R_{4}-2 R_{2}
\end{gathered}
$$

$[\mathrm{A} \quad, \quad B]=\left(\begin{array}{cccc}1 & 1 & 1 & 6 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 0 & 0\end{array}\right) R_{4} \rightarrow 3 R_{4}-R_{3}$

Now $A \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
r(A) & =\text { number of non-zero rows of } A \\
& =3
\end{aligned}
$$

$$
\begin{aligned}
r(A, B) & =\text { number of non-zero rows of }[A, B] \\
& =3
\end{aligned}
$$

Since $r(A, B)=r(A)=3=$ number of unknowns, the system is consistent unique solution.

$$
\begin{aligned}
& 3 z=9 \\
& \therefore z=3 \\
& -2 y+z=-1 \\
& -2 y+3=-1 \\
& -2 y=-4 \\
& \therefore y=2 \\
& x+y+z=6 \\
& x+2+3=6 \\
& x+2+x=1
\end{aligned}
$$

Examine if the following system of equations is consistent and find the solution if it exists. The system of the given equations is $+y+z=1,2 x-$

$$
2 y+3 z=1, x-y+2 z=5, \text { and, } 3 x+y+z=2
$$

Sol: The system of the given equations is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -2 & 3 \\
1 & -1 & 2 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5 \\
2
\end{array}\right]
$$

The augmented matrix is given by

$$
\begin{aligned}
{[A, B] } & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & -2 & 3 & 1 \\
1 & -1 & 2 & 5 \\
3 & 1 & 1 & 2
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -4 & 1 & -1 \\
0 & -2 & 1 & 4 \\
0 & -2 & -2 & -1
\end{array}\right) \begin{array}{c}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
R_{4} \rightarrow R_{4}-3 R_{1}
\end{array}
\end{aligned}
$$

$$
\sim\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -4 & 1 & -1 \\
0 & 0 & 1 & 9 \\
0 & 0 & -5 & -1
\end{array}\right) \begin{aligned}
& R_{3} \rightarrow 2 R_{3}-R_{2} \\
& R_{4} \rightarrow 2 R_{4}-R_{2}
\end{aligned}
$$

$$
[A, B] \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -4 & 1 & -1 \\
0 & 0 & 1 & 9 \\
0 & 0 & 0 & 44
\end{array}\right) R_{4} \rightarrow R_{4}+5 R_{3}
$$

$\sim(A)=$ number of non-zeru rows of $[A, B]$

$$
=4
$$

Now $A \sim\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
$r(A)=$ number of non-zero rows of A

$$
=3
$$

$r(A, B)=$ number of non-zero rows of $[A, B]$

$$
=3
$$

Since $r(A, B) \neq r(A)$, the system is inconsistent and has no solution.

Solve the system of equations if consistent

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}-5 x_{4}=4 \\
& x_{1}+3 x_{2}-2 x_{3}-7 x_{4}=5
\end{aligned}
$$

$$
2 x_{1}-x_{2}+3 x_{3}=3
$$

Sol: The system of the given equations is

$$
\left[\begin{array}{ccccc}
1 & 2 & -1 & -5 & 4 \\
1 & 3 & -2 & -7 & 5 \\
2 & -1 & 3 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

The augmented matrix is given by

$$
[A, B]=\left[\begin{array}{ccccc}
1 & 2 & -1 & -5 & 4 \\
1 & 3 & -2 & -7 & 5 \\
2 & -1 & 3 & 0 & 3
\end{array}\right]
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccccc}
1 & 2 & -1 & -5 & 4 \\
0 & 1 & -1 & -2 & 1 \\
0 & -5 & 5 & 10 & -5
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array} \\
& \sim\left[\begin{array}{ccccc}
1 & 2 & -1 & -5 & 4 \\
0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}+5 R_{2}
\end{aligned}
$$

$r(A, B)=$ number of non-zero rows of $[A, B]$

$$
\left.\begin{array}{l}
=2 \\
A \sim\left[\left.\begin{array}{llll}
1 & 2 & -1 & -5 \\
0 & 1 & -1 & -2
\end{array}\right|_{1} ^{4}\right.
\end{array}\right] .
$$

$r(A)=$ number of non-zero rows of A

$$
=2
$$

$(A, B)=r(A)=2<$ number of unknowns $=4$,

The system is consistent and has many solution.
To find the solutions we have,

$$
\begin{equation*}
x_{1}+2 x_{2}-x_{3}-5 x_{4}=4 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}-x_{3}-2 x_{4}=1 \ldots \ldots \tag{2}
\end{equation*}
$$

As there are 2 equations, we can solve for only two unknown. Hence other two variables are treated as parameters

Let $\mathrm{x}_{3}=\mathrm{k}_{1}, \mathrm{x}_{4}=\mathrm{k}_{2}$

$$
\begin{aligned}
& (2) \Rightarrow x_{2}-k_{1}-2 k_{2}=-1 \\
& x_{2}=k_{1}+2 k_{2}+1 \\
& (1) \Rightarrow x_{1}+2\left(k_{1}+2 k_{2}+1\right)-k_{1}-5 k_{2}=4 \\
& x_{1}+2 k_{1}+4 k_{2}+2-k_{1}-5 k_{2}=4 \\
& x_{1}+k_{1}-k_{2}=2 \\
& x_{1}=2-k_{1}+k_{2}
\end{aligned}
$$

\therefore The given system possess a two parameters family of solution.

LINEAR COMBINATION

Definition : Let V be a vector space over F and $v_{1}, v_{2}, \ldots . v_{n} \in V$. Any vector of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$, is called a linear combination of the vectors v_{1}, v_{2}, \ldots, If $w_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $w_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$, what is the linear combination $w_{1} y_{1}+w_{2} y_{2} ?$ Sol:

$$
\begin{aligned}
w_{1} y_{1}+w_{2} y_{2} & =\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) y_{1}+\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) y_{2} \\
& =\left(\begin{array}{c}
y_{1} \\
0 \\
y_{1}
\end{array}\right)+\left(\begin{array}{c}
y_{2} \\
2 y_{2} \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
y_{1}+y_{2} \\
2 y_{2} \\
y_{1}
\end{array}\right)
\end{aligned}
$$

In R^{3}, determine whether $(5,1,-5)$ is expressed as a line combination of $(1,-2,-3)$ and $(-2,3,-4)$.

Sol: Given $v=(5,1,-5), v_{1}=(1,-2,-3)$ and $v_{2}=(-2,3,-4)$
The linear combination of v_{1} and v_{2} is

$$
v=a_{1} v_{1}+\alpha_{2} v_{2}
$$

$$
\begin{aligned}
(5,1,-5) & =a_{1}(1,-2,-3)+\alpha_{2}(-2,3,-4) \ldots(1) \\
& =\left(\alpha_{1},-2 \alpha_{1},-3 \alpha_{1}\right)+\left(-2 \alpha_{2}, 3 \alpha_{2},-4 \alpha_{2}\right) \\
& =\left(\alpha_{1}-2 \alpha_{2},-2 \alpha_{1}+3 \alpha_{2},-3 \alpha_{1}-4 \alpha_{2}\right)
\end{aligned}
$$

From the equivalent system of equations by setting corresponding components equal to each other and then reduce to echelon form

$$
\begin{array}{r}
a_{1}-2 \alpha_{2}=5 \ldots \\
-2 \alpha_{1}+3 \alpha_{2}=1 \ldots \\
-3 \alpha_{1}-4 a_{2}=-5 \tag{4}
\end{array}
$$

sol ve(2) and (3)

$$
(1) \times 2 \Rightarrow 2 \alpha_{1}-4 \alpha_{2}=10
$$

$$
(3) \Rightarrow-2 \alpha_{1}+3 \alpha_{2}=1
$$

$$
\alpha_{2}=-11
$$

(3) $\Rightarrow \alpha_{1}-2(-11)=5$

$$
a_{1}=-17
$$

Substitute the values in (1), we get

$$
\begin{aligned}
& (5,1,-5)=-17(1,-2,-3)-11(-2,3,-4) \\
& (5,1,-5)=(5,1,95), \text { which is false }
\end{aligned}
$$

$\therefore v$ is not a linear combination of v_{1} and v_{2}
In R^{3}, determine whether $(1,7,-4)$ is expressed as a linear ;ombination of $u=(1,-3,2)$ and $v=(2,-1,1)$ in R^{3}.

Sol: We wish to write

$$
\begin{align*}
(1,7,-4) & =\alpha_{1} u+\alpha_{2} v \\
& =\alpha_{1}(1,-3,2)+\alpha_{2}(2,-1,1) \tag{1}
\end{align*}
$$

$$
=\left(\alpha_{1}+2 \alpha_{2},-3 \alpha_{1}-\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right)
$$

From the equivalent system of equations by setting corresponding component equal to each other, and then reduce to echelon form

$$
\begin{align*}
\alpha_{1}+2 \alpha_{2} & =1 \ldots(2) \tag{2}\\
-3 \alpha_{1}-\alpha_{2} & =7 \ldots(3) \tag{3}\\
2 \alpha_{1}+\alpha_{2} & =-4 \ldots
\end{align*}
$$

Verify $2 x^{3}-2 x^{2}+12 x-6$ is a linear combination of $x^{3}-2 x^{2}-5 x-3$
and $3 x^{3}-5 x^{2}-4 x-9$ in $P_{3}(R)$.
Sol: $P(x)=2 x^{3}-2 x^{2}+12 x-6, Q(x)=x^{3}-2 x^{2}-5 x-3$
and $R(x)=3 x^{3}-5 x^{2}-4 x-9$
We wish to write $P(x)=\alpha_{1} Q(x)+a_{2} R(x)$, with α_{1} and α_{2} as unknown scalars. Thus

$$
\begin{aligned}
& 2 x^{3}-2 x^{2}+12 x-6 \\
& \quad=a_{1}\left(x^{3}-2 x^{2}-5 x-3\right)+a_{2}\left(3 x^{3}-5 x^{2}-4 x-9\right) \ldots(1) \\
& 2 x^{3}-2 x^{2}+12 x-6 \\
& =\left(\alpha_{1}+3 a_{2}\right) x^{3}+\left(-2 \alpha_{1}-5 \alpha_{2}\right) x^{2}+\left(-5 \alpha_{1}-4 \alpha_{2}\right) x+\left(-3 a_{1}-9 \alpha_{2}\right)
\end{aligned}
$$

Equating the co-efficient on both sides, we get

$$
\begin{equation*}
a_{1}+3 a_{2}=2 . \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& -2 a_{1}-5 \alpha_{2}=-2 \ldots \tag{3}\\
& -5 \alpha_{1}-4 \alpha_{2}=12 \ldots \tag{4}\\
& -3 \alpha_{1}-9 \alpha_{2}=-6 \ldots \tag{5}
\end{align*}
$$

Solve (2) and (3)

$$
(2) \times 2 \Rightarrow 2 \alpha_{1}+6 \alpha_{2}=4
$$

Adding
(3) $\Rightarrow \frac{-2 \alpha_{1}-5 a_{2}=-2}{\alpha_{2}=2}$

From (2), we get $\alpha_{1}+3(2)=2$

$$
\alpha_{1}=2-6
$$

$$
\therefore \alpha_{1}=-4
$$

From (4), $-5 \alpha_{1}-4 \alpha_{2}=12$

$$
-5(-4)-4(2)=12
$$

$$
20-8=12
$$

$$
12=12
$$

(4) holds good.

From (5), $-3 \alpha_{1}-9 \alpha_{2}=-6$

$$
-3(-4)-9(2)=-6
$$

$$
12-18=-6
$$

(5) holds good.
$\therefore \mathrm{P}(\mathrm{x})$ is a linear combination of $\mathrm{Q}(\mathrm{x})$ and $\mathrm{R}(\mathrm{x})$.

Seample (44) Verify $3 x^{3}-2 x^{2}+7 x+8$ is a linear combination of $x^{3}-$ $2 x^{2}-5 x-3$ and $3 x^{3}-5 x^{2}-4 x-9$ in $P_{3}(R)$

Sol: $P(x)=3 x^{3}-2 x^{2}+7 x+8, Q(x)=x^{3}-2 x^{2}-5 x-3$
and $R(x)=3 x^{3}-5 x^{2}-4 x-9$
We wish to write $P(x)=\alpha_{1} Q(x)+\alpha_{2} R(x)$, with α_{1} and α_{2} as unknown scalars. Thus

$$
3 x^{3}-2 x^{2}+7 x+8
$$

$$
\begin{equation*}
=\alpha_{1}\left(x^{3}-2 x^{2}-5 x-3\right)+\alpha_{2}\left(3 x^{3}-5 x^{2}-4 x-9\right) \tag{1}
\end{equation*}
$$

$3 x^{3}-2 x^{2}+7 x+8$

$$
=\left(\alpha_{1}+3 \alpha_{2}\right) x^{3}+\left(-2 \alpha_{1}-5 \alpha_{2}\right) x^{2}+\left(-5 \alpha_{1}-4 \alpha_{2}\right) x+
$$

$$
\left(-3 \alpha_{1}-9 \alpha_{2}\right)
$$

Equating the co-efficient on both sides, we get

$$
\begin{array}{r}
\alpha_{1}+3 \alpha_{2}=3 \ldots \\
-2 \alpha_{1}-5 \alpha_{2}=-2 \\
-5 \alpha_{1}-4 \alpha_{2}=7 \ldots \tag{4}
\end{array}
$$

$$
\begin{equation*}
-3 \alpha_{1}-9 \alpha_{2}=8 . . \tag{5}
\end{equation*}
$$

Solve (2) and (3)

$$
\begin{aligned}
& \text { (2) } \times 2 \Rightarrow 2 \alpha_{1}+6 \alpha_{2}=6 \\
& \text { (3) } \Rightarrow-2 \alpha_{1}-5 \alpha_{2}=-2
\end{aligned}
$$

Adding

$$
\alpha_{2}=4
$$

From (2), we get $\alpha_{1}+3(4)=3$

$$
\alpha_{1}=3-12
$$

$$
\therefore \alpha_{1}=-9
$$

From (4), $-5 \alpha_{1}-4 \alpha_{2}=7$

$$
(-9)-4(4)=7
$$

$$
45-16=7
$$

$$
29=7
$$

(4) does not holds good.
$\therefore \mathrm{P}(\mathrm{x})$ cannot be written as a linear combination of $\mathrm{Q}(\mathrm{x})$ and $\mathrm{R}(\mathrm{x})$.

