

UNIT-I ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

 7.MATHEMATICAL ANALYSIS FOR RECURSIVE

ALGORITHMS:

General Plan for Analyzing the Time Efficiency of

Recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.
3. Check whether the number of times the basic operation is executed can vary

on different inputs of the same size; if it can, the worst-case, average-case,

and best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the

number of times the basic operation is executed.

5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary non

negative integer n. Since n!= 1•. . . . • (n − 1) • n = (n − 1)! • n, for n ≥ 1 and

0!= 1 by definition, we can compute F(n) = F(n − 1) • n with the following

recursive algorithm.(ND 2015) ALGORITHMF(n)

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F(n − 1) * n

Algorithm analysis

• For simplicity, we consider n itself as an indicator of this algorithm’s input

size. i.e.1.

• The basic operation of the algorithm is multiplication; whose number of

executions we denote M(n). Since the function F(n) is computed according

to the formula F(n) = F(n −1)•n for n >0.
• The number of multiplications M(n) needed to compute it must satisfy the

equality

M (n − 1) multiplications are spent to compute F(n − 1), and one more

multiplication is needed to multiply the result by n

UNIT-I ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Recurrence relations

The last equation defines the sequence M(n) that we need to find. This

equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a

function of its value at another point, namely n − 1. Such equations are called

recurrence relations or recurrences.

Solve the recurrence relation (n) = (n − 1) + 1, i.e., to find an explicit formula
f o r M(n) in terms of n only.

To determine a solution uniquely, we need an initial condition that tells us

the value with which the sequence starts. We can obtain this value by inspecting

the condition that makes the algorithm stop its recursive calls:

if n = 0 return 1.

This tells us two things. First, since the calls stop when n = 0, the smallest

value of n for which this algorithm is executed and hence M(n) defined is 0.

Second, by inspecting the pseudocode’s exiting line, we can see that when n = 0,

the algorithm performs no multiplications.

Thus, the recurrence relation and initial condition for the algorithm’s number of

multiplications

M(n):

M(n) = M(n − 1) + 1

for n >0, M(0)=0 for

n =0.

Method of backward substitutions

M(n) = M(n − 1)+1 substitute M(n − 1) = M(n − 2) +1

= [M(n − 2) + 1]+ 1

= M(n − 2)+2 substitute M(n − 2) = M(n − 3) +1

= [M(n − 3) + 1]+ 2

= M(n − 3) + 3

…

= M(n − i) + i

…

= M(n − n) + n

= n.

UNIT-I ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

ThereforeM(n)=n

EXAMPLE 2: consider educational workhorse of recursive algorithms: theTower

of Hanoi puzzle. We have n disks of different sizes that can slide onto any of three

pegs. Consider A (source), B (auxiliary), and C (Destination). Initially, all the

disks are on the first peg in order of size, the largest on the bottom and the smallest

FIGURE 1.7 Recursive solution to the Tower of Hanoi puzzle.

on top. The goal is to move all the disks to the third peg, using the second one as

an auxiliary.

UNIT-I ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Algorithm analysis

The number of moves M(n) depends on n only, and we get the following

recurrence equation for it:

M(n) = M(n − 1) + 1+ M(n − 1) for n >1.

With the obvious initial condition M(1) = 1, we have the following recurrence

relation for the number of moves M(n):

M(n) = 2M (n − 1) + 1

for n >1, M (1) = 1.

We solve this recurrence by the same method of backward substitutions:

M(n) = 2M(n − 1)+1 sub. M(n − 1) = 2M(n − 2) +1

= 2[2M (n − 2) + 1] + 1

= 22M (n − 2) + 2+1 sub. M (n − 2) = 2M (n − 3) +1

= 22[2M (n − 3) + 1]+ 2 + 1

= 23M (n − 3) + 22 + 2+1 sub. M (n − 3) = 2M (n − 4) +1

= 24M (n − 4) + 23 + 22 + 2 + 1

…

= 2iM (n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM (n − i) + 2i− 1.

…

Since the initial condition is specified for n = 1, which is achieved

for i = n − 1, M(n) = 2n−1M (n − (n − 1)) + 2n−1 – 1 = 2n−1M (1) + 2n−1

− 1= 2n−1 + 2n−1 − 1= 2n− 1.

Thus, we have an exponential time algorithm

UNIT-I ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

EXAMPLE 3: An investigation of a recursive version of the algorithm which
finds the number of binary digits in the binary representation of a positive

decimal integer.

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation

if n = 1 return 1

else return BinRec(⎝n/2])+1

Algorithm analysis

The number of additions made in computing BinRec(⎝n/2]) is A(⎝n/2]), plus one

more addition is made by the algorithm to increase the returned value by 1. This

leads to the recurrence A(n)=A(⎝n/2])+1forn >1

Then, the initial condition is A(1) =0.

The standard approach to solving such a recurrence is to solve it

only for n = 2kA(2k) = A(2k−1) + 1 for k >0,

A(20) = 0.

backward substitutions

A(2k) = A(2k−1)+1 substitute A(2k−1) = A(2k−2) +1

= [A(2k−2) + 1]+ 1= A(2k−2)+2 substitute A(2k−2) = A(2k−3) +1

= [A(2k−3) + 1]+ 2 = A(2k−3)+3 . . .

. . .

= A(2k−i) + i

. . .

= A(2k−k) + k.

Thus, we end up with A(2k) = A(1) + k = k, or, after returning to the original

variable n = 2k and hence k = log2 n,

A(n) = log2 n ϵ Θ (log2 n).

