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 7.MATHEMATICAL ANALYSIS FOR RECURSIVE 

ALGORITHMS: 

 

General Plan for Analyzing the Time Efficiency of 

Recursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 
2. Identify the algorithm’s basic operation. 
3. Check whether the number of times the basic operation is executed can vary 

on different inputs of the same size; if it can, the worst-case, average-case, 

and best-case efficiencies must be investigated separately. 

4. Set up a recurrence relation, with an appropriate initial condition, for the 

number of times the basic operation is executed. 

5. Solve the recurrence or, at least, ascertain the order of growth of its solution. 

 

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary non 

negative integer n. Since n!= 1•. . . . • (n − 1) • n = (n − 1)! • n, for n ≥ 1 and 

0!= 1 by definition, we can compute  F(n) = F(n − 1) • n with the following 

recursive algorithm.(ND 2015) ALGORITHMF(n) 

//Computes n! recursively 

//Input: A nonnegative integer n 

//Output: The value of n! 

if n = 0 return 1 

else return F(n − 1) * n 

Algorithm analysis 

• For simplicity, we consider n itself as an indicator of this algorithm’s input 

size. i.e.1. 

• The basic operation of the algorithm is multiplication; whose number of 

executions we denote M(n). Since the function F(n) is computed according 

to the formula F(n) = F(n −1)•n for n >0. 
• The number of multiplications M(n) needed to compute it must satisfy the 

equality 

 
M (n − 1) multiplications are spent to compute F(n − 1), and one more 

multiplication is needed to multiply the result by n 
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Recurrence relations 

 

The last equation defines the sequence M(n) that we need to find. This 

equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a 

function of its value at another point, namely n − 1. Such equations are called 

recurrence relations or recurrences. 

Solve the recurrence relation (n) = (n − 1) + 1, i.e., to find an explicit formula 
f   o   r  M(n) in terms of n only. 

To determine a solution uniquely, we need an initial condition that tells us 

the value with which the sequence starts. We can obtain this value by inspecting 

the condition that makes the algorithm stop its recursive calls: 

if n = 0 return 1. 

This tells us two things. First, since the calls stop when n = 0, the smallest 

value of n for which this algorithm is executed and hence M(n) defined is 0. 

Second, by inspecting the pseudocode’s exiting line, we can see that when n = 0, 

the algorithm performs no multiplications. 

                       
Thus, the recurrence relation and initial condition for the algorithm’s number of 

multiplications 

M(n): 

M(n) = M(n − 1) + 1 

for n >0, M(0)=0 for 

n =0. 

 

Method of backward substitutions 

M(n) = M(n − 1)+1 substitute M(n − 1) = M(n − 2) +1 

= [M(n − 2) + 1]+ 1 

= M(n − 2)+2 substitute M(n − 2) = M(n − 3) +1 

= [M(n − 3) + 1]+ 2 

= M(n − 3) + 3 

… 

= M(n − i) + i 

… 

= M(n − n) + n 

= n. 
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ThereforeM(n)=n 

 

EXAMPLE 2: consider educational workhorse of recursive algorithms: theTower 

of Hanoi puzzle. We have n disks of different sizes that can slide onto any of three 

pegs. Consider A (source), B (auxiliary), and C (Destination). Initially, all the 

disks are on the first peg in order of size, the largest on the bottom and the smallest  

FIGURE 1.7 Recursive solution to the Tower of Hanoi puzzle. 

on top. The goal is to move all the disks to the third peg, using the second one as 

an auxiliary. 
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Algorithm analysis 

The number of moves M(n) depends on n only, and we get the following 

recurrence equation for it:  

M(n) = M(n − 1) + 1+ M(n − 1) for n >1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 

relation for the number of moves M(n): 

M(n) = 2M (n − 1) + 1 

for n >1, M (1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

M(n)  = 2M(n − 1)+1 sub. M(n − 1) = 2M(n − 2) +1 

= 2[2M (n − 2) + 1] + 1 

= 22M (n − 2) + 2+1 sub. M (n − 2) = 2M (n − 3) +1 

= 22[2M (n − 3) + 1]+ 2 + 1 

= 23M (n − 3) + 22 + 2+1 sub. M (n − 3) = 2M (n − 4) +1 

= 24M (n − 4) + 23 + 22 + 2 + 1 

… 

= 2iM (n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM (n − i) + 2i− 1. 

… 

Since the initial condition is specified for n = 1, which is achieved 

for i = n − 1, M(n) = 2n−1M (n − (n − 1)) + 2n−1 – 1 = 2n−1M (1) + 2n−1 

− 1= 2n−1 + 2n−1 − 1= 2n− 1. 

Thus, we have an exponential time algorithm 
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EXAMPLE 3: An investigation of a recursive version of the algorithm which 
finds the number of binary digits in the binary representation of a positive 

decimal integer. 

 

ALGORITHM BinRec(n) 

//Input: A positive decimal integer n 

//Output: The number of binary digits in n’s binary representation 

if n = 1 return 1 

else return BinRec(⎝n/2])+1 

 

Algorithm analysis 

The number of additions made in computing BinRec(⎝n/2]) is A(⎝n/2]), plus one 

more addition is made by the algorithm to increase the returned value by 1. This 

leads to the recurrence A(n)=A(⎝n/2])+1forn >1 

Then, the initial condition is A(1) =0. 

The standard approach to solving such a recurrence is to solve it 

only for n = 2kA(2k) = A(2k−1) + 1 for k >0, 

A(20) = 0. 

 

backward substitutions 

A(2k) = A(2k−1)+1 substitute A(2k−1) = A(2k−2) +1 

= [A(2k−2) + 1]+ 1= A(2k−2)+2 substitute A(2k−2) = A(2k−3) +1 

= [A(2k−3) + 1]+ 2 = A(2k−3)+3 . . . 

. . . 

= A(2k−i) + i 

. . . 

= A(2k−k) + k. 

Thus, we end up with A(2k) = A(1) + k = k, or, after returning to the original 

variable n = 2k and hence k = log2 n, 

A(n) = log2 n ϵ Θ (log2 n). 

 


