2.4 Transformation of Random Variables:

Let (X, Y) be a continuous two dimensional random variables with JPDF

 $f_{XY}(x, y)$. Transform X and Y to new random variables U = h(x, y), V = g(x, y).

Then the joint PDF of (U, V) is given by

 $f_{IIV}(u,v) = |J| f_{XY}(x,y)$

where
$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Procedure to find the Marginal pdf of U & V

(1)Take u as the random variable to which the PDF to be computed and take v =

E OPTIMIZE O

- y. (if not given)
- (2) Express x and y in terms of u and v.

(3) Find
$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

- (4) Write the JPDF of (U, V), $f_{UV}(u, v) = |J| f_{XY}(x, y)$
- (5) Substitute the values of J, x and y.
- (6) Find the range of u and v using the range of x and y.

(7) The PDF of U is
$$f_U(u) = \int_{v=-\infty}^{v=\infty} f_{uv}(u, v) dv$$

(8) The PDF of V is
$$f_V(v) = \int_{u=-\infty}^{u=\infty} f_{uv}(u, v) du$$

Problem based on Transformation of Random Variables

1. If the JPDF f(x, y) is given by $f_{XY}(x, y) = x + y$; $0 \le x, y \le 1$, find PDF of

$$U = XY.$$

Solution:

Given (X, Y) is a continuous 2D RV defined in 0 < x < 1 and 0 < y < 1.

Also Given $f_{xy}(x, y) = x + y \ 0 \le x, y \le 1$

we have to find the PDF of $u = xy \dots \dots (1)$

и

let
$$v = y \Rightarrow y = u$$
.

$$(1) \Rightarrow \mathbf{u} = xv \Rightarrow x =$$

 $\therefore x = \frac{u}{v}$

SERVE OPTIMIZE OUTSPREAD

ULAM, KANYAKU

$$\frac{\partial z}{\partial u} = \frac{1}{v}; \frac{\partial x}{\partial v} = \frac{-u}{v^2}; \frac{\partial y}{\partial u} = 0; \frac{\partial y}{\partial v} = 1$$
$$J = \begin{vmatrix} \frac{1}{v} & \frac{-u}{v^2} \\ 0 & 1 \end{vmatrix} = \frac{1}{v}$$
$$J = \frac{1}{v}$$

y = v

The JPDF of $(U, V) f_{uv}(u, v) = |J| f_{xy}(x, y)$ $=\left|\frac{1}{v}\right|(x+y)=\frac{1}{v}\left(\frac{u}{v}+v\right)$ $=\frac{u}{v^2}+1$ NEERING $f_{uv}(u,v) = \frac{u}{v^2} + 1$ To find the range for u and v: We have $0 \le x \le 1 \Rightarrow 0 \le \frac{u}{v} \le 1$ i.e $0 \le u \le v$ Also $0 \le y \le 1 \Rightarrow 0 \le v \le 1$ On combining the two limits, we get $0 \le u \le v \le 1$ $f_{uv}(u,v) = \frac{u}{v^2} + 1, \ 0 \le u \le v \le 1$ ALKULAM, KANYAKU PDF of U is given by

$$f_{U}(u) = \int_{v=u}^{v=1} f_{uv}(u,v) dv \qquad 0 \le u \le v < 1$$

= $\int_{u}^{1} \left(\frac{u}{v^{2}} + 1\right) dv$
= $\int_{u}^{1} (uv^{-2} + 1) dv$
= $\left[\frac{uv^{-1}}{-1} + v\right]_{u}^{1}$

$$= \left(\frac{u}{-1} + 1\right) + 1 - u$$
$$= -u + 1 + 1 - u$$
$$= 2 - 2u$$
$$f_U(u) = 2(1 - u) \quad 0 < u < 2$$

2. Let (X, Y) be a continuous two dimensional randow. with JPDF f(x, y) =

EERING

$$4xye^{-(x^2+y^2)}x > 0$$
, $y > 0$. Find the PDF of $\sqrt{X^2 + Y^2}$

Solution:

Given (X, Y) is a continuous two dimensional random variables defined in 0 <

ALKULAM, KANYAKU

Take $v = y \Rightarrow y = v$

 $x < \infty$ and

 $0 < y < \infty$

Given
$$f(x, y) = 4xye^{-(x^2+y^2)}, 0 < x < \infty, 0 < y < \infty$$

Ôь.

let
$$u = \sqrt{x^2 + y^2} \dots (1)$$

$$(1) \Rightarrow u^2 = x^2 + y^2$$

$$u^2 = x^2 + y^2 \qquad y = v$$

$$x^{2} = u^{2} - v^{2} \Rightarrow x = \sqrt{u^{2} - v^{2}}$$

$$x\sqrt{u^{2} - v^{2}}, y = v$$

$$\frac{\partial x}{\partial u} = \frac{1}{2} \frac{1}{\sqrt{u^{2} - v^{2}}} (2u) = \frac{u}{\sqrt{u^{2} - v^{2}}}; \frac{\partial y}{\partial u} = 0$$

$$\frac{\partial x}{\partial v} = \frac{1}{2} \frac{1}{\sqrt{u^{2} - v^{2}}} (-2v) = \frac{-v}{\sqrt{u^{2} - v^{2}}}; \frac{\partial y}{\partial v} = 1 = 1$$

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{u}{\sqrt{u^{2} - v^{2}}}; \frac{\partial y}{\partial v} = 1 = 1 \end{vmatrix}$$

$$PDF \text{ of } (U, V) \text{ is } f_{UV}(u, v) = |J| f_{XY}(x, y)$$

$$= \frac{u}{\sqrt{u^{2} - v^{2}}} 4xye^{-(x^{2} + y^{2})}$$

$$f_{UV}(u, v) = 4uve^{-u^{2}}$$
To find the range for u and v:

We have x > 0

We have y > 0

 $\sqrt{u^2 - v^2} > 0 \qquad \qquad v > 0$

$$u^2 - v^2 > 0 \qquad \qquad \Rightarrow 0 < v < \infty$$

 $u^2 > v^2 \Rightarrow u > v$

$$\Rightarrow v < u$$

On combining the two limits, we get $0 < v < u < \infty$

$$f_{UV}(u, v) = 4uve^{-u^2}, 0 < v < u < \infty$$
PDF of U is given by
$$f_U(u) = \int_{v=0}^{v=u} f_{uv}(u, v) dv$$

$$= \int_0^u 4uve^{-u^2} dv$$

$$= 4ue^{-u^2} \int_0^u v dv$$

$$= 4ue^{-u^2} \left[\frac{v^2}{2}\right]_0^u$$

$$= 2u^3 e^{-u^2} 0 < u < \infty$$

3. The JPDF to two dimensional random variables X and Y is given by,

$$(x, y) = e^{-(x+y)}, x > 0, y > 0$$
. Find the PDF of $\frac{X+Y}{2}$

Solution:

Given (*X*, *Y*) is a continuous two dimensional random variable defined in $0 < x < \infty$ and

PREAD

$$0 < y < \infty. \text{ Also given } f(x, y) = e^{-(x+y)}; 0 < x < \infty, 0 < y < \infty$$

let $u = \frac{x+y}{2} \dots \dots \dots (1).$ Take $v = y \Rightarrow y = v$

$$(1) \Rightarrow u = \frac{1}{2}(x+v)$$

$$2u = x + vx = 2u - v$$

$$\therefore x = 2u - v;$$

$$y = v \frac{\partial x}{d_u} = 2 \frac{\partial x}{\partial v} = -1; \frac{\partial y}{\partial u} = 0; \frac{\partial y}{\partial v} = 1$$

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 1 \end{vmatrix} = 2$$

the PDF of (U, V) is $f_{uv}(u, v) = |f| f_{XY}(x, y)$

$$= 2e^{-(x+y)} A_{W, VANYAKUMAR}$$

$$= 2e^{-(2u-v+v)}$$

$$OBSERVE OPTIMIZE OUTSPREAD
$$= 2e^{-2u}$$$$

To find range for u and v:

We have $x > 0 \Rightarrow 2u - v > 0$

i. e.,
$$2u > v \Rightarrow v < 2u$$

Also $y > 0 \Rightarrow v > 0$

$$\therefore v < 2u; v > 0 \qquad \qquad 0 < v < 2u < \infty$$

On combining the two limits, we get $0 < v < 2u < \infty$

$$\therefore f_{UV}(u, v) = 2e^{-2u}, 0 < v < 2u < \infty$$
The PDF of U is
$$f_{U}(u) = \int_{v=0}^{v=2u} f_{UV}(u, v) dv$$

$$= \int_{0}^{2u} 2e^{-2u} dv$$

$$= 2e^{-2u} \int_{0}^{2u} dv$$

$$= 2e^{-2u} [v]_{0}^{2u}$$

$$= 2e^{-2u} [v]_{0}^{2u}$$

$$= 2e^{-2u} [v]_{0}^{2u}$$
UNIT STEP FUNCTION:
$$WE OPTIMIZE OUTSPREAD$$

$$u(x) = 1 \text{ for } x > 0$$

$$u(x) = 0 \text{ for } x < 0$$

1. If X and Y are two independent random variables each normally

distributed with mean = 0 and variance σ^2 , find the density function of R =

$$\sqrt{X^2 + Y^2}$$
 and $\phi = \tan^{-1}\left(\frac{Y}{x}\right)$

Given that *X* follows $N(0, \sigma)$

Solution:

 $\therefore f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2\sigma^2}x^2}; -\infty < x < \infty$ Also Y follows $N(0, \sigma)$. $\therefore f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2\sigma^2}y^2}; -\infty < y < \infty$

Since X and Y are independent, $f_{XY}(x, y) = f_X(x)f_Y(y)$

$$= \frac{1}{\sigma^2 2\pi} e^{\frac{-1}{2\sigma^2} (x^2 + y^2)}; -\infty < x < \infty, -\infty < y < \infty$$

We have
$$r = \sqrt{x^2 + y^2}$$
; $\theta = \tan^{-1}\left(\frac{y}{x}\right)_{\text{HZE OUTSPREAD}}$
 $\Rightarrow x = \operatorname{rcos} \theta$, $y = \operatorname{rsin} \theta$,

 $\Rightarrow J = r$

JPDF of (R, ϕ) is $f_{R\phi}(r, \theta) = |J| + f_{XY}(x, y)$

$$= r \frac{1}{\sigma^{2} 2\pi} e^{\frac{-1}{2\sigma^{2}}(x^{2} + y^{2})}$$
$$= \frac{r}{\sigma^{2} 2\pi} e^{\frac{-1}{2\sigma^{2}}r^{2}}$$

To find the range for r and θ :

We have $-\infty < x < \infty$, $-\infty < y < \infty$ t.e entire *XY* plane.

The entire XY plane is transformed into $x = r\cos\theta$, $y = r\sin\theta$

i.e the entire XY plane is transformed into $x^2 + y^2 = r^2$ (a circle of infinite

radius)

Whole region is transformed into a circle of infinite radius.

$$\therefore 0 \le r < \infty, 0 \le \theta \le 2\pi$$
$$\therefore f_{R\phi}(r,\theta) = \frac{r}{\sigma^2 2\pi} e^{\frac{-1}{2\sigma^2} r^2} 0 \le r < \infty, 0 \le \theta \le 2\pi$$

The PDF of R is

$$f_R(r) = \int_{r=0}^{\infty} f_{r\theta}(r,\theta) d\theta$$

$$OBSERVE OPTIMIZE OUTSP$$

$$=\int_{0}^{in}\frac{r}{\sigma^{2}2\pi}e^{\frac{-1}{2\sigma^{2}}r^{2}}d\theta$$

PALKULAM

$$=\frac{r}{\sigma^2 2\pi}e^{\frac{-1}{2\sigma^2}r^2}\int_0^\infty d\theta$$

$$= \frac{r}{\sigma^2 2\pi} e^{\frac{-1}{2\sigma^2} r^2} [\theta]_0^{2\pi}$$

$$f_R(r) = \frac{r}{\sigma^2} e^{\frac{-1}{2\sigma^2}r^2}; 0 \le r < \infty$$

The PDF of ϕ is

$$f_{\phi}(\theta) = \int_{r=0}^{\infty} f_{r\theta}(r,\theta) dr$$

$$= \int_{0}^{\infty} \frac{r}{\sigma^{2} 2\pi} e^{\frac{-1}{2\sigma^{2}}r^{2}} dr$$

$$= \frac{1}{\sigma^{2} 2\pi} \int_{0}^{\infty} r e^{\frac{-1}{2\sigma^{2}}r^{2}} dr$$
Put $\frac{1}{2\sigma^{2}}r^{2} = t$

$$\frac{1}{2\sigma^{2}} 2r dr = dt$$

$$r dr = \sigma^{2} dt^{-4} M_{c} KANYAMMAR$$

Contraction in the second

There is no change on the limits SERVE OPTIMIZE OUTSPREND 1 $f^{\infty} = t^{-2} h$

$$f_0(\theta) = \frac{1}{\sigma^2 2\pi} \int_0^\infty e^{-t} \sigma^2 dt$$

$$=\frac{1}{2\pi}\left[\frac{e^{-t}}{-1}\right]_{0}^{\infty}$$

$$= \frac{1}{2\pi}(0+1)$$
$$f_{\phi}(\theta) = \frac{1}{2\pi}0 \le \theta \le 2\pi$$

2. The random variables *X* and *Y* each follows an exponert distribution with parameter 1 and are independent. Find the PDF of U = X - 1

Solution:

Given X and Y follows exponential distribution with parameter with $\lambda = 1$

LAM, KANYAKU

Since X and y are independent,

$$f_{\rm XY}({\rm x},{\rm y}) = f_{\rm x}({\rm x})f_{\rm y}({\rm y})$$

let u = x - y(1) Take $v = y \Rightarrow y = v$

 $(1)e^{-(x+y)} = e^{-(u+v+v)}$

-(u+2v)

(1)
$$\Rightarrow u = x \ v \Rightarrow x = u + v$$

$$x = u + v ; y = v$$

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$$

The JPDF of (U, V) is $f_{uv}(u, v) = |J|f_{XY}(x, y)$

To find the range for u and v:

We have $x > 0 \Rightarrow u + v > 0 \Rightarrow u >$

fie $y > 0 \Rightarrow v > 0$

$$\therefore f_{uv}(u, v) = e^{-(u+2v)}u > -v, v > 0$$
PDF of *U* is

The PDF of U is

$$f_u(u) = \int f(u, v) dv^{OBSERVE}$$
 OPTIMIZE OUTSPREA

Since there are two slopes, the region is divided into two sub regions R_1 and R_2

$$\ln R_1$$
: $\ln R_2$:

At
$$P_1$$
, $v = -u$; At Q_1 , v At P_2 , $v = 0$; At Q_2 , $v = \infty$

In
$$R_1$$
 :

$$f_{U}(u) = \int_{v=-4}^{\infty} f(u, v) dv$$

$$= \int_{-u}^{\infty} e^{-(u+2v)} dv \text{ ISINEER}_{IAG}$$

$$= \int_{-u}^{\infty} e^{-u} e^{-2v} dv$$

$$= e^{-u} \left[e^{-2v} \right]_{-u}^{\infty}$$

$$= e^{-u} \left[0 - \frac{e^{2u}}{-2} \right]$$

$$= \frac{e^{u}}{2}; u < 0$$
In R_{2}

$$\ln R_2$$

$$f_{U}(u) = \int_{v=0}^{\infty} e^{-u} f(u, v) dv$$
$$= \int_{0}^{\infty} e^{-(u+2v)} dv$$

$$=\int_0^\infty e^{-u}e^{-2v}dv$$

