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UNIT I 
 

CONDUCTION 

1.1 Heat Energy and Heat Transfer 
 

Heat is a form of energy in transition and it flows from one system to another, without 

transfer of mass, whenever there is a temperature difference between the systems. The process of 

heat transfer means the exchange in internal energy between the systems and in almost every 

phase of scientific and engineering work processes, we encounter the flow of heat energy. 

1.2 Importance of Heat Transfer 
 

Heat transfer processes involve the transfer and conversion of energy and therefore, it is 

essential to determine the specified rate of heat transfer at a specified temperature difference. 

The design of equipments like boilers, refrigerators and other heat exchangers require a detailed 

analysis of transferring a given amount of heat energy within a specified time. Components like 

gas/steam turbine blades, combustion chamber walls, electrical machines, electronic gadgets, 

transformers, bearings, etc require continuous removal of heat energy at a rapid rate in order to 

avoid their overheating. Thus, a thorough understanding of the physical mechanism of heat flow 

and the governing laws of heat transfer are a must. 

1.3 Modes of Heat Transfer 
 

The heat transfer processes have been categorized into three basic modes: Conduction, 

Convection and Radiation. 

Conduction It is the energy transfer from the more energetic to the less energetic particles of a 

substance due to interaction between them, a microscopic activity. 

Convection - It is the energy transfer due to random molecular motion a long with the 

macroscopic motion of the fluid particles. 

Radiation -      It is the energy emitted by matter which is at finite temperature. All forms of 

matter emit radiation attributed to changes m the electron configuration of the 

constituent atoms or molecules The transfer of energy by conduction and 

convection requires the presence of a material medium whereas radiation does 

not. In fact radiation transfer is most efficient in vacuum. 



3  

All practical problems of importance encountered in our daily life Involve at least two, 

and sometimes all the three modes occuring simultaneously When the rate of heat flow is 

constant, i.e., does not vary with time, the process is called a steady state heat transfer process. 

When the temperature at any point in a system changes with time, the process is called unsteady 

or transient process. The internal energy of the system changes in such a process when the 

temperature variation of an unsteady process describes a particular cycle (heating or cooling of a 

budding wall during a 24 hour cycle), the process is called a periodic or quasi-steady heat 

transfer process. 

Heat transfer may take place when there is a difference In the concentration of the 

mixture components (the diffusion thermoeffect). Many heat transfer processes are accompanied 

by a transfer of mass on a macroscopic scale. We know that when water evaporates, the heal 

transfer is accompanied by the transport of the vapour formed through an air-vapour mixture. 

The transport of heat energy to steam generally occurs both through molecular interaction and 

convection. The combined molecular and convective transport of mass is called convection mass 

transfer and with this mass transfer, the process of heat transfer becomes more complicated. 

1.4 Thermodynamics and Heat Transfer-Basic Difference 
 

Thermodynamics is mainly concerned with the conversion of heat energy into other 

useful forms of energy and IS based on (i) the concept of thermal equilibrium (Zeroth Law), (ii) 

the First Law (the principle of conservation of energy) and (iii) the Second Law (the direction in 

which a particular process can take place). Thermodynamics is silent about the heat energy 

exchange mechanism. The transfer of heat energy between systems can only take place whenever 

there is a temperature gradient and thus. Heat transfer is basically a non-equilibrium 

phenomenon. The Science of heat transfer tells us the rate at which the heat energy can be 

transferred when there IS a thermal non-equilibrium. That IS, the science of heat transfer seeks 

to do what thermodynamics is inherently unable to do. 

However, the subjects of heat transfer and thermodynamics are highly complimentary. 

Many heat transfer problems can be solved by applying the principles of conservation of energy 

(the First Law) 
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1.5 Dimension and Unit 
 

Dimensions and units are essential tools of engineering. Dimension is a set of basic 

entities expressing the magnitude of our observations of certain quantities. The state of a system 

is identified by its observable properties, such as mass, density, temperature, etc. Further, the 

motion of an object will be affected by the observable properties of that medium in which the 

object is moving. Thus a number of observable properties are to be measured to identify the state 

of the system. 

A unit is a definite standard by which a dimension can be described. The difference 

between a dimension and the unit is that a dimension is a measurable property of the system and 

the unit is the standard element in terms of which a dimension can be explicitly described with 

specific numerical values. 

Every major country of the world has decided to use SI units. In the study of heat 

transfer the dimensions are: L for length, M for mass, e for temperature, T for time and the 

corresponding units are: metre for length, kilogram for mass, degree Celsius (oC) or Kelvin (K) 

for temperature and second (s) for time. The parameters important In the study of heat transfer 

are tabulated in Table 1.1 with their basic dimensions and units of measurement. 

Table 1.1 Dimensions and units of various parameters 
 

Parameter Dimension Unit 

Mass M Kilogram, kg 

Length L metre, m 

Time T seconds, s 

Temperature 
 

 Kelvin, K, Celcius oC 

Velocity L/T metre/second,m/s 

Density ML 3 kg/m3 

Force ML 1T 2 Newton, N = 1 kg m/s2 

Pressure ML2T 2 N/m2, Pascal, Pa 

Energy, Work ML2T 3 N-m, = Joule, J 

Power ML2T 3 J/s, Watt, W 

Absolute Viscosity ML 1T 1 N-s/m2, Pa-s 

Kinematic Viscosity L2T 1 
m2/s 

Thermal Conductivity MLT 3 1 W/mK, W/moC 

Heat Transfer Coefficient MT 3 1 
W/m2K, W/m2oC 

Specific Heat L2 T 2 1 
J/kg K, J/kgoC 

Heat Flux MT 3 W/m2 
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Q 

1.6 Mechanism of Heat Transfer by Conduction 
 

The transfer of heat energy by conduction takes place within the boundaries of a system, 

or a cross the boundary of t he system into another system placed in direct physical contact with 

the first, without any appreciable displacement of matter comprising the system, or by the 

exchange of kinetic energy of motion of the molecules by direct communication, or by drift of 

electrons in the case of heat conduction in metals. The rate equation which describes this 

mechanism is given by Fourier Law 

Q kAdT / dx 
 

where     = rate of heat flow in X-direction by conduction in J/S or W, 

 
k = thermal conductivity of the material. It quantitatively measures the heat conducting 

ability and is a physical property of t he material that depends upon the composition of the 

material, W/mK, 

A = cross-sectional area normal to the direction of heat flow, m2, 

dT/dx = temperature gradient at the section, as shown in Fig. 1 I The neganve sign IS 

Included to make the heat transfer rate Q positive in the direction of heat flow (heat flows in the 

direction of decreasing temperature gradient). 

 

Fig 1.1: Heat flow by conduction 
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1.7 Thermal Conductivity of Materials 
 

Thermal conductivity is a physical property of a substance and In general, It depends 

upon the temperature, pressure and nature of the substance. Thermal conductivity of materials 

are usually determined experimentally and a number of methods for this purpose are well known. 

Thermal Conductivity of Gases: According to the kinetic theory of gases, the heat 

transfer by conduction in gases at ordinary pressures and temperatures take place through the 

transport of the kinetic energy arising from the collision of the gas molecules. Thermal 

conductivity of gases depends on pressure when very low «2660 Pal or very high (> 2 × 109 Pa). 

Since the specific heat of gases Increases with temperature, the thermal conductivity Increases 

with temperature and with decreasing molecular weight. 

Thermal Conductivity of Liquids: The molecules of a liquid are more closely spaced 

and molecular force fields exert a strong influence on the energy exchange In the collision 

process. The mechanism of heat propagation in liquids can be conceived as transport of energy 

by way of unstable elastic oscillations. Since the density of liquids decreases with increasing 

temperature, the thermal conductivity of non-metallic liquids generally decreases with increasing 

temperature, except for liquids like water and alcohol because their thermal conductivity first 

Increases with increasing temperature and then decreases. 

Thermal Conductivity of Solids (i) Metals and Alloys: The heat transfer in metals arise 

due to a drift of free electrons (electron gas). This motion of electrons brings about the 

equalization in temperature at all points of t he metals. Since electrons carry both heat and 

electrical energy. The thermal conductivity of metals is proportional to its electrical conductivity 

and both the thermal and electrical conductivity decrease with increasing temperature. In contrast 

to pure metals, the thermal conductivity of alloys increases with increasing temperature. Heat 

transfer In metals is also possible through vibration of lattice structure or by elastic sound waves 

but this mode of heat transfer mechanism is insignificant in comparison with the transport of 

energy by electron gas. (ii) Nonmetals: Materials having a high volumetric density have a high 

thermal conductivity but that will depend upon the structure of the material, its porosity and 

moisture content High volumetric density means less amount of air filling the pores of the 

materials. The thermal conductivity of damp materials considerably higher than the thermal 

conductivity of dry material because water has a higher thermal conductivity than air. The 
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thermal conductivity of granular material increases with temperature. (Table 1.2 gives the 

thermal conductivities of various materials at 0oC.) 

 
 

Table 1.2 Thermal conductivity of various materials at 0oC. 
 
 
 

 

Material 

Thermal 

conductivity 

(W/m K) 

 

Material 

Thermal 

conductivity 

(W/m K) 

 

Gases 
 

Solids: Metals 
  

Hydrogen . 0175 Sliver, pure 410  

Helium 0141 Copper, pure 385  

A" 0024 AlumllllUm, pure 202  

Water vapour (saturated) 00206 Nickel, pure 93  

Carbon dioxide 00146 Iron, pure 73  

(thermal conductivity of helium  Carbon steel, I %C 43  

and hydrogen are much higher  Lead, pure 35  

than other gases. because then 

molecules have small mass and 

higher mean travel velocity) 

 Chrome-nickel-steel 

(18% Cr, 8% Ni) 

Non-metals 

16.3  

Liquids  Quartz, parallel to axis 41.6  

Mercury 821 Magnesite 4.15  

Water* 0.556 Marble 2.08 to 2.94  

Ammonia 0.54 Sandstone 1.83  

Lubricating 011  Glass, window 0.78  

SAE 40 0.147 Maple or Oak 0.17  

Freon 12 0.073 Saw dust 0.059  

  Glass wool 0.038  

* water has its maximum thermal conductivity (k = 068 W/mK) at about 150oC 

 

 
 

2. STEADY STATE CONDUCTION ONE DIMENSION 
 

2.1 The General Heat Conduction Equation for an Isotropic Solid with 

Constant Thermal Conductivity 

Any physical phenomenon is generally accompanied by a change in space and time of 

its physical properties. The heat transfer by conduction in solids can only take place when there 
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is a variation of temperature, in both space and time. Let us consider a small volume of a solid 

element as shown in Fig. 1.2. The dimensions are: x, y, z along the X-, Y-, and Z- 

coordinates. 

Fig 1.2 Elemental volume in Cartesian coordinates 
 

First we consider heat conduction the X-direction. Let T denote the temperature at the 

point P (x, y, z) located at the geometric centre of the element. The temperature gradient at the 

left      hand      face      (x       -       ~x12)       and       at       the       right       hand       face 

(x + x/2), using the Taylor's series, can be written as: 

T / x |L 

 
T / x |R 

T / x 

 
T / x 

2T / x2 . x / 2 + higher order terms. 

 
2T / x2 . x / 2 higher order terms. 

 

The net rate at which heat is conducted out of the element 10 X-direction assuming k as 

constant and neglecting the higher order terms, 

 
we get 

 
k y z 

x 2T 

2 
k y z x 

x
2
 

 

Similarly for Y- and Z-direction, 
 

We have k  x  y z 2T /  y2 and k  x  y z 2T /   z2 . 
 

If there is heat generation within the element as Q, per unit volume and the internal 

energy of the element changes with time, by making an energy balance, we write 

T 

x 

2T 

x2 

x T 

2 x 

2T 

x2 
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Q x y 

Q / k 1/ 

Q / k 1/ 

1 Q 

 

v 

 

 

r 

T 1 

r r2 sin 

Heat generated within Heat conducted away Rate of change of internal 

the element from the element energy within with the element 
 

or, z k x y z 2T / x2 2T / y2 2T /   z2 

 

c x  y  z T / t 

 

Upon simplification, 2T / x2 2T / y2 2T / z2 

 
or, 2T T / t 

 

 

Qv / k 

 

 

c 
T / t 

k 

 

where k / . c , is called the thermal diffusivity and is seen to be a physical property 

of the material of which the solid is composed. 

The Eq. (2.la) is the general heat conduction equation for an isotropic solid with a 

constant thermal conductivity. The equation in cy 

coordinates is written as: Fig. 2.I(b), 
 

2T / r2 1/ r T / r 1/ r2 2T / 2 2T / z2 
T / t (2.1b) 

 
 

 
 

1 
r2 sin 

r2 
(2.1c) 

 

Under steady state or stationary condition, the temperature of a body does not vary with 

time, i.e.   T/  t 0 . And, with no internal generation, the equation (2.1) reduces to 

2T 0 
 

It should be noted that Fourier law can always be used to compute the rate of heat 

transfer by conduction from the knowledge of temperature distribution even for unsteady 

condition and with internal heat generation. 

 

v 

 

v 

T 1 

r2 sin2 

2T 

2 
v 

k 

T 

t 
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Fig1.3: Elemental volume in cylindrical coordinates (c):spherical coordinates 
 

. One-Dimensional Heat Flow 
 

The term 'one-dimensional' is applied to heat conduction problem when: 
 

(i) Only one space coordinate is required to describe the temperature distribution 

within a heat conducting body; 

(ii) Edge effects are neglected; 
 

(iii) The flow of heat energy takes place along the coordinate measured normal to the 

surface. 

3. Thermal Diffusivity and its Significance 
 

Thermal diffusivity is a physical property of the material, and is the ratio of the 

material's ability to transport energy to its capacity to store energy. It is an essential parameter 

for transient processes of heat flow and defines the rate of change in temperature. In general, 

metallic solids have higher value, while non metallics, like paraffin, have a lower value. 

Materials having large thermal diffusivity respond quickly to changes in their thermal 

environment, while materials having lower a respond very slowly, take a longer time to reach a 

new equilibrium condition. 
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Q 

Q / A x / 

 
 

4. TEMPERATURE DISTRIBUTION IN I-D SYSTEMS 
 

4.1 A Plane Wall 
 

A plane wall is considered to be made out of a constant thermal conductivity material 

and extends to infinity in the Y- and Z-direction. The wall is assumed to be homogeneous and 

isotropic, heat flow is one-dimensional, under steady state conditions and losing negligible 

energy through the edges of the wall under the above mentioned assumptions the Eq. (2.2) 

reduces to 

d2T / dx2 = 0; the boundary conditions are: at x = 0, T = T1 

Integrating the above equation, x = L, T = T2 

T = C1x + C2, where C1 and C2 are two constants. 

Substituting the boundary conditions, we get C2 = T1 and C1 = (T2 T1)/L The 

temperature distribution in the plane wall is given by 

T = T1    (T1    T2) x/L (2.3) 
 

which is linear and is independent of the material. 

 

Further, the heat flow rate, /A = k dT/dx = (T1 T2)k/L, and therefore the 

temperature distribution can also be written as 

T T1 k (2.4) 

 

            thin the wall will increase with greater heat flow rate or 

when k is small for the same heat flow rate," 

4.2 A Cylindrical Shell-Expression for Temperature Distribution 
 

In the cylindrical system, when the temperature is a function of radial distance only and 

is independent of azimuth angle or axial distance, the differential equation (2.2) would be, (Fig. 

1.4) 

d2T /dr2 +(1/r) dT/dr = 0 

with boundary conditions: at r = rl, T = T1 and at r = r2, T = T2. 
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d 

dr 

The differential equation can be written as: 
 

1 
r dT / dr 0 , or, 

r 

 

r dT / dr 0 

 

upon integration, T = C1 ln (r) + C2, where C1 and C2 are the arbitrary constants. 
 

Fig 1.4: A Cylindrical shell 
 

By applying the boundary conditions, 
 

C1 T2 T1 / ln r2 / r1 

 

and C2 T1 ln r1 . T2 T1 / ln r2 / r1 

 

The temperature distribution is given by 
 

T T1 T2 T1 . ln r / r1 / ln r2 / r1 and 
 

Q/ L kA dT/ dr 2 k T1 T2  / ln r2 / r1 (2.5) 
 

From Eq (2.5) It can be seen that the temperature varies 10gantJunically through the 

cylinder wall In contrast with the linear variation in the plane wall . 

If we write Eq. (2.5) as Q kAm T1 T2  / r2 r1   , where 
 

Am 2 r2 r1 L/ ln r2 / r1 A2 A1 / ln A2 / A1 

 

where A2 and A1 are the outside and inside surface areas respectively. The term Am is 

has the same form as that for a plane wall. 

d 

dr 
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4 k 

kA T 

d 

dT 

2 1 

4.3 Spherical and Parallelopiped Shells--Expression for 

Temperature Distribution 

Conduction through a spherical shell is also a one-dimensional steady state problem if 

the interior and exterior surface temperatures are uniform and constant. The Eq. (2.2) in one- 

dimensional spherical coordinates can be written as 

 

1/ r2 r2dT / dr 0 , with boundary conditions, 

 

at 

or, 

r r1, T T1; at r r2 , T T2 

 
r2dT / dr 0 

and upon integration, T = C1/r + C2, where c1 and c2 are constants. substituting the 

boundary conditions, 

C1 T1 T2 r1r2 / r1 r2   , and C2 T1 T1 T2 r1r2 / r1  r1 r2 

 

The temperature distribution m the spherical shell is given by 

 

T T1 

 

 

(2.6) 
 

 

and the temperature distribution associated with radial conduction through a sphere is 

represented by a hyperbola. The rate of heat conduction is given by 

Q T T   r r / r r k A A   ½ T T   / r r (2.7) 
    

1 2    1 2 2 1 1    2 1 2 2 1 

 

where A1 
2 and A2 4  r2 

 

If Al is approximately equal to A2 i.e., when the shell is very thin, 
 

Q 1 T2 / r2 r1 ; and Q/ A T1 T2   /   r / k 
 

which is an expression for a flat slab. 
 

The above equation (2.7) can also be used as an approximation for parallelopiped shells 

which have a smaller inner cavity surrounded by a thick wall, such as a small furnace surrounded 

by a large thickness of insulating material, although the h eat flow especially in the corners, 

d 

dr 

T1 T2 r1r2 

r2 r1 

r r1 

r r1 

4 
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cannot be strictly considered one-dimensional. It has been suggested that for (A2/A1) > 2, the rate 

of heat flow can be approximated by the above equation by multiplying the geometric mean area 

Am = (A1 A2)
½ by a correction factor 0.725.] 

4.4 Composite Surfaces 
 

There are many practical situations where different materials are placed m layers to 

form composite surfaces, such as the wall of a building, cylindrical pipes or spherical shells 

having different layers of insulation. Composite surfaces may involve any number of series and 

parallel thermal circuits. 

4.5 Heat Transfer Rate through a Composite Wall 
 

layers of different materials of thicknesses L1, L2, etc and having thermal conductivities kl, k2, 

etc. On one side of the composite wall, there is a fluid A at temperature TA and on the other side 

of the wall there is a fluid B at temperature TB. The convective heat transfer coefficients on the 

two sides of the wall are hA and hB respectively. The system is analogous to a series of 

resistances as shown in the figure. 

 

 

Fig 1.5 Heat transfer through a composite wall 
 

4.6 The Equivalent Thermal Conductivity 

The process of heat transfer through compos lie and plane walls can be more 

conveniently compared by introducing the concept of 'equivalent thermal conductivity', keq. It is 

defined as: 
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n 

 

i 1 

n 

 

i 1 

keq Li Li / ki (2.8) 
 

  

 

=  
Total thickeness of the composite wall 

Total thermal resistance of the composite wall 
 

And, its value depends on the thermal and physical properties and the thickness of each 

constituent of the composite structure. 

Example 1.2 A furnace wall consists of 150 mm thick refractory brick (k = 1.6 W/mK) and 

150 mm thick insulating fire brick (k = 0.3 W/mK) separated by an au gap 

(resistance 0 16 K/W). The outside walls covered with a 10 mm thick plaster (k = 

0.14 W/mK). The temperature of hot gases is 1250°C and the room temperature 

is 25°C. The convective heat transfer coefficient for gas side and air side is 45 

W/m2K and 20 W/m2K. Calculate (i) the rate of heat flow per unit area of the 

wall surface (ii) the temperature at the outside and Inside surface of the wall and 

(iii) the rate of heat flow when the air gap is not there. 
 

Solution: Using the nomenclature of Fig. 2.3, we have per m2 of the area, hA = 45, and 

RA = 1/hA = 1/45 = 0.0222; hB = 20, and RB = 1120 = 0.05 

Resistance of the refractory brick, R1 = L1/k1 = 0.15/1.6 = 0.0937 

Resistance of the insulating brick, R3 = L3/k3 = 0.15/0.30 = 0.50 

The resistance of the air gap, R2 = 0.16 

Resistance of the plaster, R4 = 0.01/0.14 = 0.0714 

Total resistance = 0.8973, m2K/W 

Heat flow rate = T/ R = (1250-25)/0.8973= 13662 W/m2 

Temperature at the inner surface of the wall 

= TA 1366.2 × 0.0222 = 1222.25 
 

Temperature at the outer surface of the wall 
 

= TB + 1366.2 × 0.05 = 93.31 °C 
 

When the air gap is not there, the total resistance would be 



16  

Q/A 

0.8973 - 0.16 = 0.7373 
 

and the heat flow rate = (1250 25)/0/7373 = 1661.46 W/m2 

The temperature at the inner surface of the wall 

= 1250 1660.46 × 0.0222 = 1213.12°C 
 

i.e., when the au gap is not there, the heat flow rate increases but the temperature at the 

inner surface of the wall decreases. 

The overall heat transfer coefficient U with and without the air gap is 
 

U= 
 

= 13662 / (1250 25) = 1.115 Wm2 °C 

and 1661.46/l225 = 1356 W/m2oC 

The equivalent thermal conductivity of the system without the air gap 

keq = (0.15 + 0.15 + 0.01)/(0.0937 + 0.50 + 0.0714) = 0.466 W/mK. 

Example 1.2 A brick wall (10 cm thick, k = 0.7 W/m°C) has plaster on one side of the wall 

(thickness 4 cm, k = 0.48 W/m°C). What thickness of an insulating material (k = 

0.065 W moC) should be added on the other side of the wall such that the heat loss 

through the wall IS reduced by 80 percent. 

Solution: When the insulating material is not there, the resistances are: 
 

R1 = L1/k1 = 0.1/0.7 = 0.143 

and R2 = 0.04/0.48 = 0.0833 

Total resistance = 0.2263 
 

Let the thickness of the insulating material is L3. The resistance would then be 

L3/0.065 = 15.385 L3 

Since the heat loss is reduced by 80% after the insulation is added. 
 

 

0.2 
R without insulation 

R with insulation 

/   T 

Q with insulation 

Q without insulation 
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T / 

0.04 

0.033 0.25 0.4 

0.04 0.04 

0.033 0.25 1 0.033 0.4 1 

1 

10 2.0664 

or, the resistance with insulation = 0.2263/0.2 = 01.1315 

and, 15385 L3 = I 1315 0.2263 = 0.9052 

L3 = 0.0588 m = 58.8 mm 
 

Example 1.3 An ice chest IS constructed of styrofoam (k = 0.033 W/mK) having inside 

dimensions 25 by 40 by 100 cm. The wall thickness is 4 cm. The outside surface 

of the chest is exposed to air at 25°C with h = 10 W/m2K. If the chest is 

completely filled with ice, calculate the time for ice to melt completely. The heat 

of fusion for water is 330 kJ/kg. 

Solution: If the heat loss through the comers and edges are Ignored, we have three walls of walls 

through which conduction heat transfer Will occur. 

(a) 2 walls each having dimensions 25 cm × 40 cm × 4 cm 
 

(b) 2 walls each having dimensions 25 cm × 100 cm × 4 cm 
 

(c) 2 walls each having dimensions 40 cm × 100 cm × 4 cm 
 

The surface area for convection heat transfer (based on outside dimensions) 

2(33 × 48 + 33 × 108 + 48 × 108) × 10 4 =  2.0664 m2. 

Resistance due to conduction and convection can be written as 

2 

= 40 + 0.0484 = 40.0484 K/W 

 
Q R = (25 0.0) / 40.0484 = 0.624 W 

 
Inside volume of the container - 0.25 × 04 × 1 = 0.1 m3 

Mass of Ice stored = 800 × 0.1 = 80 kg; taking the density of Ice as 800 kg/m3. The time 

required to melt 80 kg of ice is 

t 
80 330 1000 

0.624 3600 24 

 

490 days 

 

Example1.4 A composite furnace wall is to be constructed with two layers of materials (k1 = 
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Q / A 

2.5 W/moC and k2 = 0.25 W/moC). The convective heat transfer coefficient at the 

inside and outside surfaces are expected to be 250 W/m2oC and 50 W/m2oC 

respectively. The temperature of gases and air are 1000 K and 300 K. If the 

interface temperature is 650 K, Calculate (i) the thickness of the two materials 

when the total thickness does not exceed 65 cm and (ii) the rate of heat flow. 

Neglect radiation. 

Solution: Let the thickness of one material (k = 2.5 W / mK) is xm, then the thickness of the 

other material (k = 0.25 W/mK) will be (0.65 x)m. 

For steady state condition, we can write 
 

Q 1000 650 1000 300 

A 1 x 1 x 0.65 x 1 

250 2.5 250 2.5 0.25 50 
 

700 0.004 0.4x 350 0.004 0.4x 4 0.65 x 0.02 
 

(i) 6x = 3.29 and x= 0.548 m. 
 

and the thickness of the other material = 0.102 m. 

 
(ii) = (350) / (0.004 + 0.4 × 0.548) = 1.568 kW/m2 

 
Example 1.5 A composite wall consists of three layers of thicknesses 300 rum, 200 mm and 100 

mm with thermal conductivities 1.5, 3.5 and is W/mK respectively. The inside 

surface is exposed to gases at 1200°C with convection heat transfer coefficient as 

30W/m2K. The temperature of air on the other side of the wall is 30°C with 

convective heat transfer coefficient 10 Wm2K. If the temperature at the outside 

surface of the wall is 180°C, calculate the temperature at other surface of the 

wall, the rate of heat transfer and the overall heat transfer coefficient. 

Solution: The composite wall and its equivalent thermal circuits is shown in the figure. 
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T 

T 

T 

 
 

Fig 1.6 
 

The heat energy will flow from hot gases to the cold air through the wall. 

From the electric Circuit, we have 

Q / A h2   T4 T0 10 180 30 1500 W / m2 

 

also, Q / A h1 1200 T1 

 

T1 1200   1500 / 30 1150o C 

 

Q / A 1 T2 / L1 / k1 

 

T2 T1 1500  0.3/1.5 850 
 

Similarly, Q / A 2 T3 / L2 / k2 

 

T3 T2 1500   0.2 / 3.5 764.3o C 

 

and Q / A 3 T4 / L3 / k3 

 

L3 / k3 764.3 180 /1500 and k3 = 0.256 W/mK 
 

Check: 
 

Q / A 1200 30  /  R; 
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11 

Q / A 15 

Q / A 

where R 1/ h1 L1 / k1 L2 / k2 L3 / k3 1/ h2 

 

R 1/ 30 0.3/1.5 0.2 / 3.5 0.1/ 0.256 1/10 0.75 

 
and Q / A 70 / 0.78 1500 W / m2 

 

The overall heat transfer coefficient, U 1/   R 1/ 0.78 1.282 W / m2K 
 

Since the gas temperature is very high, we should consider the effects of radiation also. 

Assuming the heat transfer coefficient due to radiation = 3.0 W/m2K the electric circuit would 

be: 

The combined resistance due to convection and radiation would be 

 
1      1      1      1      1     

h     h     60W / m2oC 
 

R R R 1 1 c r 
1 2       

hc hr 

 

00 60 T T1 60 1200 T1 

 

T1 1200 
1500 

60 
1175o C 

 

again, T2   / L1 / k1 T2 T1   1500   0.3 /1.5 875o C 

 

and T3 T2 1500   0.2 / 3.5 789.3o C 

 

L3 / k3 789.3  180  /1500; k3 0.246 W / mK 

 

R 
1 0.3 0.2 0.2 0.1 1 

60 1.5 1.5 3.5 0.246 10 

 

0.78 

 

and U 1/   R 1.282 W / m2K 
 

Example 1.6 A flat roof (12 m x 20 m) of a building has a composite structure It consists of a 15 

cm lime-khoa plaster covering (k = 0 17 W/m°C) over a 10 cm cement concrete (k 

= 0.92 W/m°C). The ambient temperature is 42°C. The outside and inside heat 

transfer coefficients are 30 W/m2°C and 10 W/m2 0C. The top surface of the roof 

absorbs 750 W/m2 of solar radiant energy. The temperature of the space may be 

assumed to be 260 K. Calculate the temperature of the top surface of the roof and 

T1 
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Q 

1 1 

the amount of water to be sprinkled uniformly over the roof surface such that the 

inside temperature is maintained at 18°C. 

Solution: The physical system is shown in Fig. 1.7 and it is assumed we have one-dimensional 

flow, properties are constant and steady state conditions prevail. 

Fig 1.7 
 

Let the temperature of the top surface be T1°C. 
 

Heat lost by thee top surface by convection to the surroundings is 
 

Qc / A T 30 T1 42 30T1 1260 

 

Heat energy conducted inside through the roof = T / R 
 
 

or,  

k1 k2 h2 

T1    18 / = 0.918 (T1 18) 

 

Assuming that the top surface of the roof behaves like a black body, energy lost by 

radiation. 

Qr / A T 273 4 2604 5.67  10 8 T 273 4 
 

259.1 

 

By making an energy balance on the top surface of the roof, 

Energy coming in = Energy going out 

750 = (30T, -1260)+ 0.918 (T1-18) + 5.67 × 10 8 (T1 + 273)4 - 259.1 

or, 2285.624 = 30.918 T1 + 5.67 × 10 8 (T1 + 273)4 

Solving by trial and error, T1 = 53.4°C, and the total energy conducted through the roof 

A 

T1    18 

L1 L2 1 

0.15 0.1 1 

0.17 0.92 10 
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M 

U 

per hour is 
 

0.918 (53.4 18) × (12 × 20) × 3600 = 28077.58 kJ/hr 
 

Assuming the latent heat of vaporization of water as 2430 kJ/kg, the quantity of water to 

be sprinkled over the surface such that it evaporates and consumes 28077.58 kJ/hr, is 

w = 28077.58/2430 = 11.55 kg/hr. 

 
Example 1.7 An electric hot plate is maintained at a temperature of 350°C and is used to keep a 

solution boiling at 95°C. The solution is contained in a cast iron vessel (wall 

thickness 25 mm, k = 50 W/mK) which is enamelled inside (thickness 0.8 mm, k = 

1.05 WmK) The heat transfer coefficient for the boiling solution is 5.5 kW/m1K. 

Calculate (i) the overall heat transfer coefficient and (ii) heat transfer rate. 

If the base of the cast iron vessel is not perfectly flat and the resistance of the resulting 

air film is 35 m2K1kW, calculated the rate of heat transfer per unit area. (Gate'93) 

Solution: The physical system is shown in the figure below. 
 

Fig 1.8 
 

Under steady state conditions, 

 

, where U is the overall heat transfer coefficient. 
 

 

T T 

R L1 L2 1 

k1 k2 h 

Q / A T 
T 

1/ U 
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U 

Q / A 

Therefore, 

 

1/ U 
L1 L2 1

 

k1 k2 h 

 

 

0.00144 

 

U = 692.65 W/m2K 

 
Q / A T   = 692.65 × (350 95) = 176.65 kW/m2. 

 
With the presence of air film at the base, the total resistance to heat flow would be: 

0.00144 + 0.035 = 0.03644 m2K/W 

and the rate of heat transfer, = 255/0.03644 = 7 kW/m2. 

 
(Fig. 1.9 shows a combination of thermal resistance placed in series and parallel for a 

composite wall having one-dimensional steady state heat transfer. By drawing analogous electric 

circuits, we can solve such complex problems having both parallel and series thermal 

resistances.) 

 
 

Fig. 1.9 Series and parallel one-dimensional heat transfer through a composite wall with 

convective heat transfer and its electrical analogous circuit 

Example 1.8 A door (2 m x I m) is to be fabricated with 4 cm thick card board (k = 0.2 W /mK) 

placed between two sheets of fibre glass board (each having a thickness of 40 mm and k = 0.04 

W/mK). The fibre glass boards are fastened with 50 steel studs (25 mm diameter, k = 40 W/mK). 

Estimate the percentage of heat transfer flow rate through the studs. 

Solution: The thermal circuit with steel studs can be drawn as in Fig. 1.10. 

0.025 0.0008 1 

50 1.05 5500 
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T 

T 

8.18 

 
 

Fig 1.10 
 

The cross-sectional area or the surface area of the door for the heat transfer is 2m2. The 

cross-sectional area of the steel studs is: 

50 × 2 = 0.02455 m2 

and the area of the door area of the steel studs = 2.0 0.02455 = 1.97545 

R1, the resistance due to fibre glass board on the outside 

= L/kA = 0.04/(0.04 × 1.97545) = 0.506. 
 

R2, the resistance due to card board = 0.101 
 

R3, the resistance due to fibre glass board on the inside = 0.506 
 

R4, the resistance due to steel studs = L/kA = 0.121 (40 × 0.2455) = 0 1222 
 

With reference to Fig 2.9, Q1 1 T2   /  R T1 T2  /1.113 

and Q2 1 T2   / 0.1222 

Therefore, Q2 /  Q1 Q2 33 / 9.0818 0.9 

 
ie, 90 percent of the heat transfer will take place through the studs. 

 

Example 1.9 Find the heat transfer rate per unit depth through the composite wall sketched. 

Assume one dimensional heat flow. 
 

Solution: The analogous electric circuit has been drawn in the figure. 
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Fig 1.11 

RA = 0.2/150 = 0.00133 

RB = 0.6/(30 × 0.5) = 0.04 

RC = 0.6/(70 × 0.5) = 0.017 

RD = 0.3/50 = 0.006 

1/RB + 1/RC = 1/RBC = 83.82 
 

Therefore, RBC = 1/83.82 = 0.0119 
 

Total resistance to heat flow = 0.00133 + 0.0119 + 0006 = 0.01923 

Rate of heat transfer per unit depth = (370 50)/ 0.01923 = 16.64 kW m. 

The Significance of Biot Number 
 

Let us consider steady state conduction through a slab of thickness L and thermal 

conductivity k. The left hand face of the wall is maintained at T constant temperature T1 and the 

right hand face is exposed to ambient air at To, with convective heat transfer coefficient h. The 
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analogous electric circuit will have two thermal resistances: R1 = L/k and R2 = l/h. The drop in 

temperature across the wall and the air film will be proportional to their resistances, that is, 

(L/k)/(1/h) = hL/k. 

 

 
 

 

Fig 1.12: Effect of Biot number on temperature profile 
 

or, 

 

B 
Conduction resistance 

i Convection resistance 
 

When Bi >> 1, the temperature drop across the air film would be negligible and the 

temperature at the right hand face of the wall will be approximately equal to the ambient 

temperature. Similarly, when Bi «I, the temperature drop across the wall is negligible and the 

transfer of heat will be controlled by the air film resistance. 

 

 
5. The Concept of Thermal Contact Resistance 
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Heat flow rate through composite walls are usually analysed on the assumptions that - 

(i) there is a perfect contact between adjacent layers, and (ii) the temperature at the interface of 

the two plane surfaces is the same. However, in real situations, this is not true. No surface, even 

a so-called 'mirror-finish surface', is perfectly smooth ill a microscopic sense. As such, when two 

surfaces are placed together, there is not a single plane of contact. The surfaces touch only at 

limited number of spots, the aggregate of which is only a small fraction of the area of the surface 

or 'contact area'. The remainder of the space between the surfaces may be filled with air or other 

fluid. In effect, this introduces a resistance to heat flow at the interface. This resistance IS called 

'thermal contact resistance' and causes a temperature drop between the materials at the interfaces 

as shown In Fig. 2.12. (That is why, Eskimos make their houses having double ice walls 

separated by a thin layer of air, and in winter, two thin woolen blankets are more comfortable 

than one woolen blanket having double thickness.) 

Fig. 2.12 Temperature profile with and without contact resistance when two solid 

surfaces are joined together 

Example 1.10 A   furnace   wall   consists   of   an   inner   layer   of   fire   brick   25   cm   thick 

k = 0.4 W/mK and a layer of ceramic blanket insulation, 10 cm thick 

k = 0.2 W/mK. The thermal contact resistance between the two walls at the 

interface is 0.01 m2K/w. Calculate the temperature drop at the interface if the 

temperature difference across the wall is 1200K. 

Fig 1.13:    temperature profile with and   without contact resistance when two solid 

surfaces are joined together 

Solution: The resistance due to inner fire brick = L/k = 0.25/0.4 = 0.625. 
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Q / A 

Q / A 

0.15 

15 1 

The resistance of the ceramic insulation = 0.1/0.2 = 0.5 

Total thermal resistance = 0.625 + 0.01 + 0.5 = 1 135 

Rate of heat flow, = 2 

Temperature drop at the interface, 

T × R = 1057.27 × 0.01 = 10.57 K 

 
Example 1.11 A 20 cm thick slab of aluminium (k = 230 W/mK) is placed in contact with a 15 

cm thick stainless steel plate (k = 15 W/mK). Due to roughness, 40 percent of the 

area is in direct contact and the gap (0.0002 m) is filled with air (k = 0.032 W/mK). 

The difference in temperature between the two outside surfaces of the plate is 

200°C Estimate (i) the heat flow rate, (ii) the contact resistance, and (iii) the drop in 

temperature at the interface. 

Solution: Let us assume that out of 40% area m direct contact, half the surface area is occupied 

by steel and half is occupied by aluminium. 

The physical system and its analogous electric circuits is shown in Fig. 2.13. 
 

R 
0.2 

1 230 1 

R 
0.0002 

0.00087 , 

1.04 10 2 , 

R 
0.0002 

2 230 0.2 

 

R 
0.0002 

4.348 10 6 

 

6.667 10 5 
3 

 

 

and 

 

0.032 0.6 

R5 0.01 

4 15   0.2 

Again 1/ R 2,3, 4 1/ R 2 1/ R3 1/ R 4 

2.3 105 96.15  1.5 104 24.5 104 

Therefore, R 2, 3, 4 4.08  10 6 
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Q 

 
 

Fig 1.14 
 

Total resistance, R R1 R2, 3, 4 R5 

 

870 10 6 4.08 10 6 1000 10 6 1.0874 10 2 
 

Heat flow rate, = 200/1.087 × 10 2 = 18.392 kW per unit depth of the plate. 
 

Contact resistance, R R 2, 3, 4 4.08  10 6 mK / W  

 
6 × 18392 = 0.075oC 

 

6. An Expression for the Heat Transfer Rate through a Composite Cylindrical 

System 

Let us consider a composite cylindrical system consisting of two coaxial cylinders, radii 

r1, r2 and r2 and r3, thermal conductivities kl and k2 the convective heat transfer coefficients at the 

inside and outside surfaces h1 and h2 as shown in the figure. Assuming radial conduction under 
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L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

steady state conditions we have: 
 

Fig 1.15 

 

R1 1/ h1A1 1/ 2 1 Lh1 

R 2 ln r2 / r1 2 Lk1 

R3 ln r3 / r2 2 Lk2 

R4 1/ h2A2 1/ 2 3h2L 

And Q / 2 
 

 

T1 T0  /  R 

 

T1 T0 / 1/ h1r1 ln r2 / r1 / k1 ln r3 r2 / k2 1/ h2r3 

 

Example 1.12 A steel pipe. Inside diameter 100 mm, outside diameter 120 mm (k 50 W/mK) IS 

Insulated     with      a      40      mm      thick      high      temperature      Insulation 

(k = 0.09 W/mK) and another Insulation 60 mm thick (k = 0.07 W/mK). The 

ambient temperature IS 25°C. The heat transfer coefficient for the inside and 

outside surfaces are 550 and 15 W/m2K respectively. The pipe carries steam at 

300oC. Calculate (1) the rate of heat loss by steam per unit length of the pipe (11) 

the temperature of the outside surface 

Solution: I he cross-section of the pipe with two layers of insulation is shown 111 Fig. 1.16. with 

its analogous electrical circuit. 
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T / 

Q 

 
 

Fig1.16 Cross-section through an insulated cylinder, thermal resistances in series. 

For L = 1.0 m. we have 

R1, the resistance of steam film = 1/hA = 1/(500 × 2 ×3.14× 50 × 10 3) = 0.00579 

R2, the resistance of steel pipe = ln(r2/rl) / 2 k 

= ln(60/50)/2 × 50 = 0.00058 
 

R3, resistance of high temperature Insulation 
 

ln(r3/r2) / 2  k = ln(100/60) / 2  × 0.09 = 0.903 

R4 = 1n(r4/r3)/2 k = ln(160/100)/2 × 0.07 = 1.068 

R5 = resistance of the air film = 1/(15 × 2 × 160 × 10 3) = 0.0663 

The total resistance = 2.04367 

and Q R = (300 25) / 204367 = 134.56 W per metre length of pipe. 

Temperature at the outside surface. T4 = 25 + R5, 

= 25 + 134.56 × 0.0663 = 33.92o C 

 
When the better insulating material (k = 0.07, thickness 60 mm) is placed first on the 

steel pipe, the new value of R3 would be 

R3 = ln(120 /60) / 2  × 0.07 = 1.576 ; and the new value of R4 will be 

R4 = ln(160/120) 2 × 0.09 = 0.5087 
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The total resistance = 2.15737 and Q = 275/2.15737 = 127.47 W per m length (Thus the 

better insulating material be applied first to reduce the heat loss.) The overall heat transfer 

coefficient, U, is obtained as U = Q / A T 

× 320 × 10 3 × 1 = 1.0054 

and U = 134.56/(275 × 1.0054) = 0.487 W/m2 K. 

Example 1.13 A steam pipe 120 mm outside diameter and 10m long carries steam at a pressure 

of 30 bar and 099 dry. Calculate the thickness of a lagging material (k = 0.99 

W/mK) provided on the steam pipe such that the temperature at the outside 

surface of the insulated pipe does not exceed 32°C when the steam flow rate is 1 

kg/s and the dryness fraction of steam at the exit is 0.975 and there is no pressure 

drop. 

Solution: The latent heat of vaporization of steam at 30 bar = 1794 kJ/kg. 
 

The loss of heat energy due to condensation of steam = 1794(0.99 0.975) 
 

= 26.91 kJ/kg. 
 

Since the steam flow rate is 1 kg/s, the loss of energy = 26.91 kW. 
 

The saturation temperature of steam at 30 bar IS 233.84°C and assuming that the pipe 

material offers negligible resistance to heat flow, the temperature at the outside surface of the 

uninsulated steam pipe or at the inner surface of the lagging material is 233.84°C. Assuming 

one-dimensional radial heat flow through the lagging material, we have 

= (T1 T2 )/[ln(r2/ rl)] 2 Lk 

 
or, 26.91 × 1000 (W) = (233.84 32) × 2 × 10 × 0.99/1n(r/60) 

ln (r/60) = 0.4666 

r2/60 = exp (0.4666) = 1.5946 
 

r2 = 95.68 mm and the thickness = 35.68 mm 
 

Example 1.14 A Wire, diameter 0.5 mm length 30 cm, is laid coaxially in a tube (inside 

diameter 1 cm, outside diameter 1.5 cm, k = 20 W/mK). The space between the 

wire and the inside wall of the tube behaves like a hollow tube and is filled with a 
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gas. Calculate the thermal conductivity of the gas if the current flowing through 

the wire is 5 amps and voltage across the two ends is 4.5 V, temperature of the 

wire is 160°C, convective heat transfer coefficient at the outer surface of the tube 

is 12 W/m2K and the ambient temperature is 300K. 

Solution: Assuming steady state and one-dimensional radial heat flow, we can draw the thermal 

circuit as shown In Fig. 1 17. 

Fig 1.17 
 

The rate of heat transfer through the system, 
 

/2 L = VI/2 L = (4.5 × 5)/(2 × 3.142 × 0.3) = 11.935 (W/m) 

 
R1, the resistance due to gas = ln(r2/rl), k = ln(0.01/0.0005)/k = 2.996/k. 

R2, resistance offered by the metallic tube = ln( r3 / r2) k 

= ln(1.5 /1.0) / 20 = 0.02 
 

R3, resistance due to fluid film at the outer surface 

l/hr3 = 1/(l2×1.5×I0-2) =5.556 

and / 2 

 

R1 = 2.9996/k = 11.1437 0.02 5.556 = 5.568 

or, k = 2.996/5.568 = 0.538 W/mK. 
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Example 1.15 A steam pipe (inner diameter 16 cm, outer diameter 20 cm, k = 50 W/mK) is 

covered with a 4 cm thick insulating material (k = 0.09 W/mK). In order to 

reduce the heat loss, the thickness of the insulation is Increased to 8mm. 

Calculate the percentage reduction in heat transfer assuming that the convective 

heat transfer coefficient at the Inside and outside surfaces are 1150 and 10 

W/m2K and their values remain the same. 

Solution: Assuming one-dimensional radial conduction under steady state, 
 

/ 2  
 

R1, resistance due to steam film = 1/hr = 1/(1150 × 0.08) = 0.011 
 

R2, resistance due to pipe material = ln (r2/r1)/k = ln (10/8)/50 = 0.00446 

R3, resistance due to 4 cm thick insulation 

= ln(r3/r2)/k = ln(14/10)/0.09 = 3.738 
 

R4, resistance due to air film = 1/hr = 1/(10 × 0.14) = 0.714. 

 
Therefore, Q/ 2 T  

 

 

change. 

When the thickness of the insulation is increased to 8 cm, the values of R3 and R4 will 

 

 
R3 = ln(r3/r2)/k = ln(18/10)/0.09 = 6.53 ; and 

R4 = 1/hr = 1/(10 × 0.18) = 0.556 

Therefore, Q/ 2 T / (0.011 + 0.00446 + 6.53 + 0.556) 
 

= T / 7.1 = 0.14084 T 

 

Percentage reduction in heat transfer = 
0.22386 0.14084 

0.37 37% 
0.22386 

 

Example 1.16 A small hemispherical oven is built of an inner layer of insulating fire brick 125 

mm thick (k = 0.31 W/mK) and an outer covering of 85% magnesia 40 mm thick (k 

= 0.05 W/mK). The inner surface of the oven is at 1073 K and the heat transfer 

coefficient for the outer surface is 10 W/m2K, the room temperature is 20oC. 
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Calculate the rate of heat loss through the hemisphere if the inside radius is 0.6 m. 
 

Solution: The resistance of the fire brick 
 

= r2 r1  / 2 kr1r2 
0.725   0.6 

2 0.31 0.6 0.725 

 

0.1478 

 

The resistance of 85% magnesia 
 

= r3 r2  / 2 kr2r3 
0.765   0.725 

2 0.05 0.725 0.765 

 

0.2295 

 

The resistance due to fluid film at the outer surface = 1/hA 

 
0.2295 

 
 

The resistance due to fluid film at the outer surface = 1/hA 

 
0.0272 

 
 

 

Rate of heat flow, Q R 
800 20 

0.1478 0.2295 0.272 

 

1930W 

 

Example 1.17 A cylindrical tank with hemispherical ends is used to store liquid oxygen at 

180oC. The diameter of the tank is 1.5 m and the total length is 8 m. The tank is 

covered with a 10 cm thick layer of insulation. Determine the thermal conductivity 

of the insulating material so that the boil off rate does not exceed 10 kg/hr. The 

latent heat of vapourization of liquid oxygen is 214 kJ/kg. Assume that the outer 

surface of insulation is at 27oC and the thermal resistance of the wall of the tank is 

negligible. (ES-94) 

Solution: The maximum amount of heat energy that flows by conduction from outside 

to inside = Mass of liquid oxygen × Latent heat of vapourisation. 

= 10 × 214 = 2140 kJ/hr = 2140 × 1000/3600 = 594.44 W 
 

Length of the cylindrical part of the tank = 8 2r = 8 1.5 = 6.5m 
 

since the thermal resistance of the wall does not offer any resistance to heat flow, the 

temperature at the inside surface of the insulation can be assumed as - 183°C whereas the 

10   2 

1 

0.765   0.765 

10   2 

1 

0.765   0.765 
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27 

2 
2   210   2 k   0.85 0.75 

0.10 

temperature at the outside surface of the insulation is 27°C. 

Heat energy coming in through the cylindrical part, 1 

 

 
T 

ln r2 / r1 

2 Lk 
 

or, Q1 
183 2 6.5 k 

ln 8.5 / 7.5 

 

68531.84 k 

 

Heat energy coming in through the two hemispherical ends, 

Q2 T   2 k r2r1   / r2 r1 

 

 

= 16825.4 k 

Therefore, 594.44 = (68531.84 + 16825.4) k; or, k = 6.96 × 10 3 W/mK. 

Example 1.18 A spherical vessel, made out of2.5 em thick steel plate IS used to store 

10m3 of a liquid at 200°C for a thermal storage system. To reduce the heat loss to the 

surroundings, a 10 cm thick layer of insulation (k = 0.07 W/rnK) is used. If the convective heat 

transfer coefficient at the outer surface is W/m2K and the ambient temperature is 25°C, calculate 

the rate of heat loss neglecting the thermal resistance of the steel plate. 

If the spherical vessel is replaced by a 2 m diameter cylindrical vessel with flat ends, 

calculate the thickness of insulation required for the same heat loss. 

3 4 r3 
Solution: Volume of the spherical vessel = 10m r 1.336 m 

3 
 

Outer radius of the spherical vessle, r2 1.3364 0.025 1.361 m 
 

Outermost radius of the spherical vessel after the insulation = 1.461 m. 
 

Since the thermal resistance of the steel plate is negligible, the temperature at the inside 

surface of the insulation is 200oC. 

Thermal resistance of the insulating material =   r3 

 
0.1 

0.057 
4 0.07 1.461 1.361 

r2 / 4 k r3r2 

 

Thermal resistance of the fluid film at the outermost surface = 1/hA 
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1 1 

0.06073 0.714 ln r3 /1.025 0.005 / r3 

1 

9.09 r3 1.025 0.0159 

1/ 10   4 1.461 2 0.00373 
 

 

Rate of heat flow = T /   R 200 25 / 0.057 0.00373 2873.8 W 

 

Volume of the insulating material used = 4 / 3 r3 r3 2.5 m3 
 

 
 

Volume of the cylindrical vessel 10 m3 

3 2 

 

 
d 2 L; L 10 / 3.183 m 

 

Outer radius of cylinder without insulation = 1.0 + 0.025 = 1.025 m. 

Outermost radius of the cylinder (with insulation) = r3. 

Therefore, the thickness of insulation = r3 1.025 = 

Resistance, the heat flow by the cylindrical element 

ln r3 /1.025 
1/ hA 

ln r3 /1.025 1 

2 Lk 2 3.183 0.07 10   2 r3 

 
= 0.714 ln (r3 / 1.025) + 0.005/r3 

 

Resistance to heat flow through sides of the cylinder 

3.183 

 

 
2 / kA 1/ hA 

2 r3 1.025 1 

 

9.09 r3 

0.07 1 10   2 

 
1.025 0.0159 

 

For the same heat loss, T / R would be equal in both cases, therefore, 
 

 

Solving by trial and error, (r  
 

and the volume of the insulating material required = 2.692 m3. 

 

7. Unsteady State Conduction Heat Transfer 

 
7.1 . Transient State Systems-Defined 

4 
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The process of heat transfer by conduction where the temperature varies with time and 

with space coordinates, is called 'unsteady or transient'. All transient state systems may be 

broadly classified into two categories: 

(a) Non-periodic Heat Flow System - the temperature at any point within the system 

changes as a non-linear function of time. 

(b) Periodic Heat Flow System - the temperature within the system undergoes periodic 

changes which may be regular or irregular but definitely cyclic. 

There are numerous problems where changes in conditions result in transient 

temperature distributions and they are quite significant. Such conditions are encountered in - 

manufacture of ceramics, bricks, glass and heat flow to boiler tubes, metal forming, heat 

treatment, etc. 

7.2. Biot and Fourier Modulus-Definition and Significance 
 

Let us consider an initially heated long cylinder (L >> R) placed in a moving stream of 

fluid at T    Ts , as shown In Fig. 3.1(a). The convective heat transfer coefficient at the surface is 

h, where, 

Q = hA ( Ts T ) 
 

This energy must be conducted to the surface, and therefore, 

Q = -kA(dT / dr) r = R 

or, h( Ts T ) = -k(dT/dr)r=R -k(Tc-Ts)/R 
 

where Tc is the temperature at the axis of the cylinder 
 

By rearranging,(Ts - Tc) / ( Ts T ) h/Rk (3.1) 
 

The term, hR/k, IS called the 'BlOT MODULUS'. It is a dimensionless number and is 

the ratio of internal heat flow resistance to external heat flow resistance and plays a fundamental 

role in transient conduction problems involving surface convection effects. I t provides a 

measure 0 f the temperature drop in the solid relative to the temperature difference between the 

surface and the fluid. 
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For Bi << 1, it is reasonable to assume a uniform temperature distribution across a solid 

at any time during a transient process. 

Founer Modulus - It is also a dimensionless number and is defind as 

Fo= t/L2 (3.2) 

where L is the characteristic length of the body, a is the thermal diffusivity, and t is the 

time 
 

The Fourier modulus measures the magnitude of the rate of conduction relative to the 

change in temperature, i.e., the unsteady effect. If Fo << 1, the change in temperature will be 

experienced by a region very close to the surface. 

 

 
 

 

Fig. 1.18 Effect of Biot Modulus on steady state temperature distribution in a plane wall 

with surface convection. 
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Fig. 1.18 (a) Nomenclature for Biot Modulus 
 

7.3. Lumped Capacity System-Necessary Physical Assumptions 
 

We know that a temperature gradient must exist in a material if heat energy is to be 

conducted into or out of the body. When Bi < 0.1, it is assumed that the internal thermal 

resistance of the body is very small in comparison with the external resistance and the transfer of 

heat energy is primarily controlled by the convective heat transfer at the surface. That is, the 

temperature within the body is approximately uniform. This idealised assumption is possible, if 

(a) the physical size of the body is very small, 
 

(b) the thermal conductivity of the material is very large, and 
 

(c) the convective heat transfer coefficient at the surface is very small and there is a 

large temperature difference across the fluid layer at the interface. 

7.4. An Expression for Evaluating the Temperature Variation in a Solid Using 

Lumped Capacity Analysis 

Let us consider a small metallic object which has been suddenly immersed in a fluid 

during a heat treatment operation. By applying the first law of 

Heat flowing out of the body = Decrease in the internal thermal energy of 

during a time dt the body during that time dt 

or, hAs( T T )dt = - pCVdT 

 
where As is the surface area of the body, V is the volume of the body and C is the 

specific heat capacity. 

or, (hA/ CV)dt = - dT /( T T ) 

 
with the initial condition being: at t = 0, T = Ts 

 

The solution is : ( T T )/( Ts T ) = exp(-hA / CV)t (3.3) 
 

Fig. 3.2 depicts the cooling of a body (temperature distribution time) using lumped 

thermal capacity system. The temperature history is seen to be an exponential decay. 
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We can express 
 

Bi × Fo = (hL/k)×( t/L2) = (hL/k)(k/ C)(t/L2) = (hA/ CV)t, 

where V / A is the characteristic length L. 

And, the solution describing the temperature variation of the object with respect to time 

is given by 
 

( T T )/( Ts T ) = exp(-Bi· Fo) (3.4) 
 

Example 1.19 Steel balls 10 mm in diameter (k = 48 W/mK), (C = 600 J/kgK) are 

cooled in air at temperature 35°C from an initial temperature of 750°C. Calculate the time 

required for the temperature to drop to 150°C when h = 25 W/m2K and density p = 7800 kg/m3. 

Solution: Characteristic length, L = VIA = 4/3 r3/4 r2 = r/3 = 5 × 10-3/3m 

Bi = hL/k = 25 × 5 × 10-3/ (3 × 48) = 8.68 × 10-4<< 0.1, 

Since the internal resistance is negligible, we make use of lumped capacity analysis: Eq. 

(3.4), 
 

( T T ) / ( Ts T )=exp(-Bi Fo) ; (150 35) / (750 35) = 0.16084 
 

Bi × Fo = 1827; Fo = 1.827/ (8. 68 × 10-4) 2.1× 103 

or, t/ L2 = k/ ( CL2)t = 2100 and t = 568 = 0.158 hour 

 
We can also compute the change in the internal energy of the object as: 
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1 1 

U0 Ut 
CVdT 

0 0  
CV Ts T hA / CV expt hAt / CV dt 

 

= CV Ts T exp hAt / CV 1 (3.5) 
 

= -7800 × 600 × (4/3) (5 × 10-3)3 (750-35) (0.16084 - 1) 

= 1.47 × 103 J = 1.47 kJ. 

If we allow the time 't' to go to infinity, we would have a situation that corresponds to 

steady state in the new environment. The change in internal energy will be U0 - U = 

[ CV( Ts T ) exp(- )- 1] = [ CV( Ts T ]. 
 

We can also compute the instantaneous heal transfer rate at any time. 
 

or. Q = - VCdT/dt = - VCd/dt[ T + ( Ts T )exp(-hAt/   CV) ] 
 

= hA( Ts T )[exp(-hAt/ CV)) and for t = 60s, 
 

Q = 25 × 4 × 3.142 (5 × 10-3)2(750 35) [exp( -25 × 3 × 60/5 × 10-3 × 7800 × 600)] 

= 4.63 W. 
 

Example 1.20 A cylindrical steel ingot (diameter 10 cm. length 30 cm, k = 40 W mK. 

= 7600 kg/m3, C = 600 J/kgK) is to be heated in a furnace from 50°C to 850°C. The 

temperature inside the furnace is 1300oC and the surface heat transfer coefficient is 100 W/m2K. 

Calculate the time required. 

Solution: Characteristic length. L = V/A =   r2L/2   r(r+ L) = rL/2(r + L) 

= 5 × 10-2 × 30 × 10-2/2 (2 (5 +30) × 10-2) 

= 2.143 × 10-2 m. 

Bi = hL/k = 100 × 2.143 × 10-2/40 = 0.0536 << 0.1 

Fo =   t/L2 = (k/   C) × (t/L2) 

 
= 40 × t/(7600 × 600 × [2.143 × 1 0-2)2] = 191 × 10-2 t 

 

and ( T T )/( Ts T ) = exp(-Bi Fo) 
 

or, (850 - 1300) /(50 - 1300) = 0.36 = exp (- Bi Fo) 
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Bi Fo= 102 
 

and Fo = 19.06 and t = 19.06/( 1.91 × 1 0 -2) = 16.63 min 
 

(The length of the ingot is 30 cm and it must be removed from the furnace after a period 

of 16.63 min. therefore, the speed of the ingot would be 0.3/16.63 = 1.8 × 10-2 m/min.) 

Example 1.21 A block of aluminium (2cm × 3cm × 4cm, k = 180 W/mK, = 10 -4m2/s) 

inllially at 300oC is cooled in air at 30oC. Calculate the temperature of the block after 3 min. 

Take h = 50W/ m2K. 

Solution: Characteristic length, L= [2 × 3 × 4 /2(2 × 3 + 2 × 4 + 3 × 4)] × 10-2 

= 4.6 × 10-3m 

Bi = hL/k = 50 × 4.6 × 10-3/180 = 1.278 × 10-3 << 0.1 

Fo = t/L2 =10-4 × 180 / (4.6×10 -3)2 = 850 

exp(-Bi Fo) = exp(-1.278 × 10-3×'850) = 0.337 

(T - T  ) (Ts - T ) - (T - 30)/(300 - 30) = 0.337 

T= 121.1°C. 
 

Example 1.22 A copper wire 1 mm in diameter initially at 150°C is suddenly dipped 

into water at 35°C. Calculate the time required to cool to a temperature of 90°C if h = 100 W/ 

m2K. What would be the time required if h = 40 W/m2K. (for copper; k = 370 W/mK, = 8800 

kg/m3. C = 381 J/kgK. 

Solution: The characteristic length for a long cylindrical object can be approximated as 

r/2. As such, 

Bi = hL/k = 100 × 0.5 × 10 -3/ (2 × 370) = 6.76 × 10-5<< 0.1 

Fo = t/L2 = (k/ C ) × (t/L2) 

 
= [370t/(8800 × 381 × (0.25 × 10-3)2] = 1760t 

exp(-Bi Fo) = (T - T )(Ts -T ) 

= (90 - 35)/(150 - 35) = 0.478 
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Bi Fo = 0.738 = 6.76 × 10-5 × 1760 t; t = 6.2s 

when h = 40 W/ m2K, Bi = 2.7 × 10 -5 and 2.7 × 10 -5 ×1760 t = 0.738; 

or, t = 15.53s. 
 

Example 1.23 A metallic rod (mass 0.1 kg, C = 350 J/kgK, diameter 12.5 mm, surface 

area 40cm2) is initially at 100°C. It is cooled in air at 25°C. If the temperature drops to 40°C in 

100 seconds, estimate the surface heat transfer coefficient. 

Solution: hA/ CV = hA/ mC = h × 40 × 10-4 /(0.1 × 350) = 1.143×10-4h 

and, hAt / CV = 1.143 × 10-4 h × 100 = 1.143 × 10 -2h 

(T - T )/(Ts - T ) = (40 - 25) / (100 - 25) = 0.2 

 
exp( -1.143 × 10-2h) = 0.2 

or, 1.143 × 10-2h = 1.6094, and h = 140W/m2K. 


