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Definition 

Let 𝑉 be a finite dimensional inner product space and let 𝑇 be a linear operator 

on 𝑉. Then there exist a unique function 𝑇∗: 𝑉 → 𝑉 such that ⟨𝑇(𝑥), 𝑦), 

⟨𝑥, 𝑇∗(𝑦)⟩ for all 𝑥, 𝑦 ∈ 𝑉. The linear operator 𝑇∗ is called adjoint of operator 𝑇. 

 

Theorem 3.14: Let 𝑻 be a linear functional on a finite dimensional inner 

product space 𝑽. Then there exists a unique vector 𝒚 ∈ 𝑽 such that 𝒈(𝒙) = 

⟨𝒙, 𝒚⟩ for every 𝒙 ∈ 𝑽. 

Proof: Let 𝛽 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an orthonormal basis of 𝑉. 

Let 𝑦 = 𝑔(𝑣1)̅̅ ̅̅ ̅̅ ̅𝑣1 + 𝑔(𝑣2)̅̅ ̅̅ ̅̅ ̅̅ 𝑣2 + ⋯ + 𝑔(𝑣𝑛)̅̅ ̅̅ ̅̅ ̅̅ 𝑣𝑛 

Define ℎ: 𝑉 → 𝐹 by ℎ(𝑥) = ⟨𝑥, 𝑦⟩ for every 𝑦 ∈ 𝑉. 

It is clear that ℎ is linear. 

Then for 𝑖 = 1,2, … … , 𝑛, 

ℎ(𝑣𝑖) = ⟨𝑣𝑖 , 𝑦⟩  = ⟨𝑣𝑖 , 𝑔(𝑣1)̅̅ ̅̅ ̅̅ ̅𝑣1 + 𝑔(𝑣2)̅̅ ̅̅ ̅̅ ̅̅ 𝑣2 + ⋯ + 𝑔(𝑣𝑛)̅̅ ̅̅ ̅̅ ̅̅ 𝑣𝑛) 

 = ⟨𝑣1, 𝑔(𝑣1)̅̅ ̅̅ ̅̅ ̅𝑣i⟩[∵ ⟨𝑣𝑖, 𝑣𝑗⟩ = 0 for 𝑖 ≠ 𝑗] 

 = 𝑔(𝑣𝑖)⟨𝑣𝑖, 𝑣𝑖⟩ = 𝑔(𝑣𝑖)∥∥𝑣𝑖∥∥
2 [∵ ∥∥𝑣𝑖∥∥

2 = 1] ∴ ℎ(𝑣𝑖) = 𝑔(𝑣𝑖) 

This is true for each 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 

∴ ℎ = 𝑔 

We have to prove the uniqueness. 

Now suppose that 𝑦′ is another vector in 𝑉 for which 

𝑔(𝑥) = ⟨𝑥, 𝑦′⟩ for each 𝑥 ∈ 𝑉 

Then 

⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑦′⟩ 

⇒ (𝑥, 𝑦) − ⟨𝑥, 𝑦′⟩ = 0 ⇒ (𝑥, 𝑦 − 𝑦′) = 0 ⇒ 𝑦 − 𝑦′ = 0 ⇒ 𝑦 = 𝑦′ 

∴ y  is unique 

Let 𝑻 be a linear operator on a finite dimensional inner prods then there 

exists a unique linear operator 𝑻′ on V such that  
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                ⟨𝑻(𝒙), 𝒚⟩ = ⟨𝒙, 𝑻∗(𝒚)⟩ for every 𝒙, 𝒚 ∈ 𝑽. 

Proof: Let 𝑦 be an arbitrary but fixed element of 𝑉. 

𝑔: V →= 𝐹 by 𝑔(𝑥) = ⟨𝑇(𝑥), 𝑦⟩ for every 𝑦 ∈ 𝑉. 

First we prove that 𝑔 is linear. 

La 𝑥1, 𝑥2 ∈ 𝑉 and 𝛼 ∈ 𝐹. 

 

(𝑖)𝑔(𝑥1 + 𝑥2)  = (𝑇(𝑥1 + 𝑥2), 𝑦)

 = ⟨𝑇(𝑥1) + 𝑇(𝑥2), 𝑦⟩[∵ 𝑇 is linear ]

 = ⟨𝑇(𝑥1), 𝑦⟩ + ⟨𝑇(𝑥2), 𝑦⟩

 = 𝑔(𝑥1) + 𝑔(𝑥2)

(𝑖𝑖)𝑔(𝑎𝑥1) = ⟨𝑇(𝛼𝑥1), 𝑦⟩

= ⟨𝛼𝑇(𝑥1), 𝑦⟩[∵ 𝑇 is linear ]

= 𝛼⟨𝑇(𝑥1), 𝑦⟩

= 𝛼𝑔(𝑥1)

 

Therefore g is a linear transformation on V. 

By Theorem 3.14, There exists a unique vector 𝑦′ ∈ 𝑉 such that 

Define 𝑇∗: 𝑉 → 𝑉 by 𝑇∗(𝑦) = 𝑦′ for 𝑦 ∈ 𝑉. 

Therefore ⟨𝑇(𝑥), 𝑦⟩ = ⟨𝑥, 𝑇∗(𝑦)⟩ for each 𝑥 ∈ 𝑉. 

We have to prove that 𝑇∗ is linear 

Let 𝑦1, 𝑦2 ∈ 𝑉 and 𝛼 ∈ 𝐹. 

 (i) 

⟨𝑥,𝑇
∗(𝑦1 + 𝑦2)⟩  = ⟨𝑇(𝑥), 𝑦1 + 𝑦2⟩

 = ⟨𝑇(𝑥), 𝑦1⟩ + ⟨𝑇(𝑥), 𝑦2⟩

 = ⟨𝑥, 𝑇∗(𝑦1)⟩ + ⟨𝑥, 𝑇∗(𝑦2)⟩

 

Since x is arbitrary, 

⟨𝑇∗(𝑦1 + 𝑦2) = 𝑇∗(𝑦1) + 𝑇∗(𝑦2) 

 

(ii) ⟨𝑥, 𝑇∗(𝛼𝑦1)⟩ == ⟨𝑇(𝑥), α𝑦1⟩ 

= 𝛼‾⟨𝑇(𝑥), 𝑦1⟩

 = 𝛼‾⟨𝑥, 𝑇∗(𝑦1)⟩

 = ⟨𝑥, 𝛼𝑇∗(𝑦1)⟩

 

Since 𝑥 is arbitrary, 
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𝑇∗(𝛼𝑦1) = 𝛼𝑇∗(𝑦1) 

Therefore 𝑇∗ is linear. 

Finally, we need to show that 𝑇∗ is unique. Suppose that 𝑈: 𝑉 → 𝑉. 

is linear and that it satisfies ⟨𝑇(𝑥), 𝑦⟩ = ⟨𝑥, 𝑈(𝑦)⟩ for all 𝑥, 𝑦 ∈ 𝑉. Then 

⟨𝑥, 𝑇∗(𝑦)⟩ = ⟨𝑥, 𝑈(𝑦)⟩ for all 𝑥, 𝑦 ∈ 𝑉, so 

𝑇∗ = 𝑈.   

Theorem 3.16: Let 𝑽 be a finite-dimensional inner product space, and let 𝜷 

be an orthonormal basis for 𝑽. If T is a linear operator on 𝑽, then [𝑻∗]𝜷 =

[𝑻]𝜷
∗  

Proof:  Let 𝐴 = [𝑇∗]𝛽 and 𝐵 = [𝑇]𝛽
∗  and, 𝛽 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an orthonormal 

basis of 𝑉. Then 

𝐵𝑖𝑗  = ⟨𝑇∗(𝑣𝑗), 𝑣𝑖⟩

 = ⟨𝑣𝑙 , 𝑇∗(𝑣𝚥)⟩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 = ⟨𝑇(𝑣𝑙), (𝑣𝚥)⟩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 = 𝐴‾𝑗𝑖

 = 𝐴𝑖𝑗
∗

 

Thus 𝐵 = 𝐴∗ 

Theorem 3.17: Let 𝑻 and 𝑼 be linear operators on a finite dimensional 

inner product space 𝑽 and 𝜶𝝐𝑭. Then 

(i) (𝑻 + 𝑼)∗ = 𝑻∗ + 𝑼∗ 

(ii) (𝜶𝑻)∗ = 𝜶‾ 𝑻∗ 

(iii) (𝑻𝑼)∗ = 𝑼∗𝑻∗ 

(iv) (𝑻∗)∗ = 𝑻 

(v) 𝑰∗ = 𝑰 

Proof 

(i) Let 𝑥, 𝑦 ∈ 𝑉 

⟨(𝑇 + 𝑈)𝑥, 𝑦⟩ =  ⟨𝑇(𝑥) + 𝑈(𝑥), 𝑦⟩

 = ⟨𝑇(𝑥), 𝑦⟩ + ⟨𝑈(𝑥), 𝑦⟩

 = ⟨𝑥, 𝑇∗(𝑦)⟩ + ⟨𝑥, 𝑈∗(𝑦)⟩
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= ⟨𝑥, 𝑇∗(𝑦) + 𝑈∗(𝑦)⟩

 = ⟨𝑥, (𝑇∗ + 𝑈∗)𝑦⟩

∴ ⟨(𝑇 + 𝑈)𝑥, 𝑦⟩  = ⟨𝑥, (𝑇∗ + 𝑈∗)𝑦⟩

⇒ ⟨𝑥, (𝑇 + 𝑈)∗𝑦⟩  = ⟨𝑥, (𝑇∗ + 𝑈∗)𝑦⟩

 

By the uniqueness of adjoint implies 

(𝑇 + 𝑈)∗ = 𝑇∗ + 𝑈∗ 

(ii) Let 𝛼 ∈ 𝐹 and 𝑥, 𝑦 ∈ 𝑉 

⟨(𝛼𝑇)(𝑥), 𝑦⟩ = ⟨𝛼𝑇(𝑥), 𝑦⟩

= 𝛼⟨𝑇(𝑥)𝑦⟩

= 𝛼⟨𝑥, 𝑇∗(𝑦)⟩

⟨(𝛼𝑇)𝑥, 𝑦⟩ = ⟨𝑥, 𝛼‾𝑇∗(𝑦)⟩

∴ ⟨𝑥, (𝛼𝑇)∗𝑦⟩ = ⟨𝑥, 𝛼‾𝑇∗(𝑦)⟩

 

By the uniqueness of the adjoint implies 

(𝛼𝑇)∗ = 𝛼‾𝑇∗ 

(iii) Let 𝑥, 𝑦 ∈ 𝑉 

⟨(𝑇𝑈)(𝑥), 𝑦⟩ =  ⟨𝑇(𝑈(𝑥)), 𝑦⟩

 = ⟨𝑈(𝑥), 𝑇∗(𝑦)⟩

⟨(𝑇𝑈)(𝑥), 𝑦⟩ = ⟨𝑥, 𝑈∗(𝑇∗(𝑦))⟩

 = ⟨𝑥, (𝑈∗𝑇∗)(𝑦)⟩

∴ ⟨(𝑇𝑈)(𝑥), 𝑦⟩  = ⟨𝑥, (𝑈∗𝑇∗)(𝑦)⟩

⟨𝑥, (𝑇𝑈)∗𝑦⟩ = ⟨𝑥, (𝑈∗𝑇∗)(𝑦)⟩

 

By the uniqueness the adjoint implies 

(𝑇𝑈)∗ = 𝑈∗𝑇∗ 

(iv) Let 𝑥, 𝑦 ∈ 𝑉  

⟨𝑇∗(𝑥), 𝑦⟩ = ⟨𝑦,̅̅̅̅ 𝑇∗(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟩

= ⟨𝑇(𝑦), 𝑥⟩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= ⟨𝑥, 𝑇(𝑦)⟩

∴ (𝑇∗(𝑥), 𝑦)  = ⟨𝑥, 𝑇(𝑦)⟩

⟨𝑥, (𝑇∗)∗(𝑦)⟩  = ⟨𝑥, 𝑇(𝑦)⟩

 

By uniqueness of adjoint implies 

(𝑇∗)∗ = T 
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(v|) Let 𝑥, 𝑦 ∈ 𝑉 

⟨I𝑥, 𝑦⟩ = ⟨𝑥, 𝑦⟩ 

= ⟨𝑥, I𝑦⟩(∵ I(y) = y) 

⇒ ⟨𝑥, I ∗ (𝑦)⟩ = ⟨𝑥, I𝑦⟩ 

By uniqueness of adjoint implies 

I∗ = I 

 

 


