Definition

Let *V* be a finite dimensional inner product space and let *T* be a linear operator

on V. Then there exist a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle$,

 $\langle x, T^*(y) \rangle$ for all $x, y \in V$. The linear operator T^* is called adjoint of operator T.

Theorem 3.14: Let *T* be a linear functional on a finite dimensional inner product space *V*. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for every $x \in V$.

Proof: Let
$$\beta = \{v_1, v_2, ..., v_n\}$$
 be an orthonormal basis of V.
Let $y = \overline{q(v_1)}v_1 + \overline{q(v_2)}v_2 + \dots + \overline{q(v_n)}v_n$

Define
$$h: V \to F$$
 by $h(x) = \langle x, y \rangle$ for every $y \in V$.

1 .1 . 7 . 1.

Then for
$$i = 1, 2, ..., n$$
,

$$h(v_i) = \langle v_i, y \rangle = \langle v_i, \overline{g(v_1)}v_1 + \overline{g(v_2)}v_2 + \cdots$$

$$= \langle v_1, \overline{g(v_1)}v_i \rangle [\because \langle v_i, v_i \rangle = 0 \text{ for } i \neq i]$$

$$= g(v_i) \langle v_i, v_i \rangle = g(v_i) ||v_i||^2 [:: ||v_i||^2 = 1] :: h(v_i) = g(v_i)$$

This is true for each v_i , i = 1, 2, ..., n

$$\therefore h = g$$

 $+g(v_n)v_n$

We have to prove the uniqueness.

Now suppose that y' is another vector in V for which

$$g(x) = \langle x, y' \rangle$$
 for each $x \in V$

Then

$$\langle x, y \rangle = \langle x, y' \rangle$$

$$\Rightarrow (x, y) - \langle x, y' \rangle = 0 \Rightarrow (x, y - y') = 0 \Rightarrow y - y' = 0 \Rightarrow y = y'$$

$$\therefore y \text{ is unique}$$

Let *T* be a linear operator on a finite dimensional inner prods then there exists a unique linear operator T' on V such that

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$
 for every $x, y \in V$.

Proof: Let y be an arbitrary but fixed element of V.

$$g: V \to = F$$
 by $g(x) = \langle T(x), y \rangle$ for every $y \in V$.

First we prove that g is linear.

La $x_1, x_2 \in V$ and $\alpha \in F$.

$$(i)g(x_1 + x_2) = (T(x_1 + x_2), y)$$

= $\langle T(x_1) + T(x_2), y \rangle$ [: T is linear]
= $\langle T(x_1), y \rangle + \langle T(x_2), y \rangle$
= $g(x_1) + g(x_2)$
(ii) $g(ax_1) = \langle T(\alpha x_1), y \rangle$
= $\langle \alpha T(x_1), y \rangle$ [: T is linear]
= $\alpha \langle T(x_1), y \rangle$
= $\alpha g(x_1)$

Therefore g is a linear transformation on V.

By Theorem 3.14, There exists a unique vector $y' \in V$ such that

Define $T^*: V \to V$ by $T^*(y) = y'$ for $y \in V$.

Therefore $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for each $x \in V$.

We have to prove that T^* is linear

Let $y_1, y_2 \in V$ and $\alpha \in F$.

$$\begin{array}{l} \langle x_{i}T^{*}(y_{1}+y_{2})\rangle &= \langle T(x), y_{1}+y_{2}\rangle \\ (i) &= \langle T(x), y_{1}\rangle + \langle T(x), y_{2}\rangle \\ &= \langle x, T^{*}(y_{1})\rangle + \langle x, T^{*}(y_{2})\rangle \end{array}$$

Since x is arbitrary,

$$\langle T^*(y_1 + y_2) = T^*(y_1) + T^*(y_2)$$

(ii) $\langle x, T^*(\alpha y_1) \rangle == \langle T(x), \alpha y_1 \rangle$

$$= \bar{\alpha} \langle T(x), y_1 \rangle$$

= $\bar{\alpha} \langle x, T^*(y_1) \rangle$
= $\langle x, \alpha T^*(y_1) \rangle$

Since x is arbitrary,

$$T^*(\alpha y_1) = \alpha T^*(y_1)$$

Therefore T^* is linear.

Finally, we need to show that T^* is unique. Suppose that $U: V \to V$.

is linear and that it satisfies $\langle T(x), y \rangle = \langle x, U(y) \rangle$ for all $x, y \in V$. Then

 $\langle x, T^*(y) \rangle = \langle x, U(y) \rangle$ for all $x, y \in V$, so

$$T^* = U.$$

Theorem 3.16: Let *V* be a finite-dimensional inner product space, and let β be an orthonormal basis for *V*. If T is a linear operator on *V*, then $[T^*]_{\beta} = [T]_{\beta}^*$

Proof: Let $A = [T^*]_{\beta}$ and $B = [T]^*_{\beta}$ and, $\beta = \{v_1, v_2, ..., v_n\}$ be an orthonormal basis of *V*. Then

$$B_{ij} = \frac{\langle T^*(v_j), v_i \rangle}{\langle v_l, T^*(v_j) \rangle}$$

= $\overline{\langle T(v_l), (v_j) \rangle}$
= $\overline{A_{ji}}$
= A_{ij}^*

Thus $B = A^*$

Theorem 3.17: Let *T* and *U* be linear operators on a finite dimensional inner product space *V* and $\alpha \in F$. Then

(i)
$$(T + U)^* = T^* + U^*$$

(ii) $(\alpha T)^* = \overline{\alpha}T^*$
(iii) $(TU)^* = U^*T^*$
(iv) $(T^*)^* = T$
(v) $I^* = I$
Proof
(i) Let $x, y \in V$
 $\langle (T + U)x, y \rangle = \langle T(x) + U(x), y \rangle$
 $= \langle T(x), y \rangle + \langle U(x), y \rangle$
 $= \langle x, T^*(y) \rangle + \langle x, U^*(y) \rangle$

$$= \langle x, T^*(y) + U^*(y) \rangle$$
$$= \langle x, (T^* + U^*)y \rangle$$
$$\therefore \langle (T + U)x, y \rangle = \langle x, (T^* + U^*)y \rangle$$
$$\Rightarrow \langle x, (T + U)^*y \rangle = \langle x, (T^* + U^*)y \rangle$$

By the uniqueness of adjoint implies

$$(T+U)^* = T^* + U^*$$

(ii) Let $\alpha \in F$ and $x, y \in V$

$$\langle (\alpha T)(x), y \rangle = \langle \alpha T(x), y \rangle$$
$$= \alpha \langle T(x)y \rangle$$
$$= \alpha \langle x, T^*(y) \rangle$$
$$\langle (\alpha T)x, y \rangle = \langle x, \overline{\alpha}T^*(y) \rangle$$
$$\therefore \langle x, (\alpha T)^*y \rangle = \langle x, \overline{\alpha}T^*(y) \rangle$$

By the uniqueness of the adjoint implies

(iii) Let
$$x, y \in V$$

$$\langle (TU)(x), y \rangle = \langle T(U(x)), y \rangle$$

$$= \langle U(x), T^{*}(y) \rangle$$

$$\langle (TU)(x), y \rangle = \langle x, U^{*}(T^{*}(y)) \rangle$$

$$= \langle x, (U^{*}T^{*})(y) \rangle$$

$$\therefore \langle (TU)(x), y \rangle = \langle x, (U^{*}T^{*})(y) \rangle$$

$$\langle x, (TU)^{*}y \rangle = \langle x, (U^{*}T^{*})(y) \rangle$$

By the uniqueness the adjoint implies

$$(TU)^* = U^*T^*$$

(iv) Let $x, y \in V$

$$\langle T^*(x), y \rangle = \overline{\langle y, T^*(x) \rangle}$$

$$= \overline{\langle T(y), x \rangle}$$

$$= \langle x, T(y) \rangle$$

$$\therefore (T^*(x), y) = \langle x, T(y) \rangle$$

$$\langle x, (T^*)^*(y) \rangle = \langle x, T(y) \rangle$$

By uniqueness of adjoint implies

$$(T^*)^* = \mathrm{T}$$

(v) Let $x, y \in V$

$$\langle Ix, y \rangle = \langle x, y \rangle$$
$$= \langle x, Iy \rangle (\because I(y) = y)$$
$$\Rightarrow \langle x, I * (y) \rangle = \langle x, Iy \rangle$$

By uniqueness of adjoint implies

 $I^* = I$

